1
|
Xu Y, Liu X, Schwarz S, Hu L, Guo D, Gu Q
and Schwarz W: Inhibitory efficacy of bufadienolides on Na+,
K+-pump activity versus cell proliferation. Biochem Biophys Rep.
6:158–164. 2016.
|
2
|
Emam H, Zhao QL, Furusawa Y, Refaat A,
Ahmed K, Kadowaki M and Kondo T: Apoptotic cell death by the novel
natural compound, cinobufotalin. Chem Biol Interact. 199:154–160.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yin PH, Liu X, Qiu YY, Cai JF, Qin JM, Zhu
HR and Li Q: Anti-tumor activity and apoptosis-regulation
mechanisms of bufalin in various cancers: New hope for cancer
patients. Asian Pac J Cancer Prev. 13:5339–5343. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Takai N, Kira N, Ishii T, Yoshida T,
Nishida M, Nishida Y, Nasu K and Narahara H: Bufalin, a traditional
oriental medicine, induces apoptosis in human cancer cells. Asian
Pac J Cancer Prev. 13:399–402. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Watabe M, Ito K, Masuda Y, Nakajo S and
Nakaya K: Activation of AP-1 is required for bufalin-induced
apoptosis in human leukemia U937 cells. Oncogene. 16:779–787. 1998.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Watabe M, Masuda Y, Nakajo S, Yoshida T,
Kuroiwa Y and Nakaya K: The cooperative interaction of two
different signaling pathways in response to bufalin induces
apoptosis in human leukemia U937 cells. J Biol Chem.
271:14067–14072. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hildebrandt B, Wust P, Ahlers O, Dieing A,
Sreenivasa G, Kerner T, Felix R and Riess H: The cellular and
molecular basis of hyperthermia. Crit Rev Oncol Hematol. 43:33–56.
2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Engin K, Tupchong L, Moylan DJ, Alexander
GA, Waterman FM, Komarnicky L, Nerlinger RE and Leeper DB:
Radomized trial of one versus two adjuvant hyperthermia treatments
per week in patients with superficial tumors. Int J Hyperthermia.
9:327–340. 1993. View Article : Google Scholar : PubMed/NCBI
|
9
|
Urano M, Kuroda M and Nishimura Y: For the
clinical application of themochemotherapy given at mild
temperatures. Int J Hyperthermia. 15:79–107. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Falk MH and Issels RD: Hyperthermia in
oncology. Int J Hyperthermia. 17:1–18. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dewey WC, Thrall D and Gilette EL:
Hyperthermia and radiation-a selective thermal effect on
chronically hypoxic tumor cells in vivo. Int J Radiat Oncol Biol
Phys. 2:99–103. 1977. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dewey WC, Hopwood LE, Sapareto SA and
Gerweck LE: Cellular responses to combinations of hyperthermia and
radiation. Radiology. 123:463–474. 1977. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sellins KS and Cohen JJ: Gene induction by
gamma-irradiation leads to DNA fragmentation in lymphocytes. J
Immunol. 139:3199–3206. 1987.PubMed/NCBI
|
14
|
Hopcia KL, McCarey YL, Sylvester FC and
Held KD: Radiation- induced apoptosis in HL60 cells: Oxygen effect,
relationship between apoptosis and loss of clonogenicity, and
dependence of time to apoptosis on radiation dose. Radiat Res.
145:315–323. 1996. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao QL, Fujiwara Y and Kondo T: Mechanism
of cell death induction by nitroxide and hyperthermia. Free Radic
Biol Med. 40:1131–1143. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Utz PJ and Anderson P: Life and death
decisions: Regulation of apoptosis by proteolysis of signaling
molecules. Cell Death Differ. 7:589–602. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Krenn L and Kopp B: Bufadienolides from
animal and plant sources. Phytochemistry. 48:1–29. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schatzmann HJ: The role of Na+ and K+ in
the ouabain-inhibition of the Na+ K+-activated membrane adenosine
triphosphatase. Biochim Biophys Acta. 94:89–96. 1965. View Article : Google Scholar : PubMed/NCBI
|
19
|
Puschett JB, Agunanne E and Uddin MN:
Emerging role of the bufadienolides in cardiovascular and kidney
diseases. Am J Kidney Dis. 56:359–370. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jing Y, Ohizumi H, Kawazoe N, Hashimoto S,
Masuda Y, Nakajo S, Yoshida T, Kuroiwa Y and Nakaya K: Selective
inhibitory effect of bufalin on growth of human tumor cells in
vitro: Association with the induction of apoptosis in leukemia
HL-60 cells. Jpn J Cancer Res. 85:645–651. 1994. View Article : Google Scholar : PubMed/NCBI
|
21
|
Panesar NS: Bufalin and unidentified
substance(s) in traditional Chinese medicine cross-react in
commercial digoxin assay. Clin Chem. 38:2155–20156. 1992.PubMed/NCBI
|
22
|
Dahm-Daphi J, Brammer I and Dikomey E:
Heat effects on the repair of DNA double-strand breaks in CHO
cells. Int J Radiat Biol. 72:171–179. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dikomey E and Franske J: Effect of heat on
induction and repair of DNA strand breaks in X-irradiated CHO
cells. Int J Radiat Biol. 61:221–233. 1992. View Article : Google Scholar : PubMed/NCBI
|
24
|
Calderwood SK and Hahn GM: Thermal
sensitivity and resistance of insulin-receptor binding. Biochim
Biophys Acta. 756:1–8. 1983. View Article : Google Scholar : PubMed/NCBI
|
25
|
Stevenson MA, Minton KW and Hahn GM:
Survival and concanavalin- A-induced capping in CHO fibroblasts
after exposure to hyperthermia, ethanol, and X irradiation. Radiat
Res. 86:467–478. 1981. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Coss RA and Linnemanns WA: The effects of
hyperthermia on the cytoskeleton: A review. Int J Hyperthermia.
12:173–196. 1996. View Article : Google Scholar : PubMed/NCBI
|
27
|
Konings AW and Ruifrok AC: Role of
membrane lipids and membrane fluidity in thermosensitivity and
thermotolerance of mammalian cells. Radiat Res. 102:86–98. 1985.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Majda JA, Gerner EW, Vanlandingham B,
Gehlsen KR and Cress AE: Heat shock-induced shedding of cell
surface integrins in A549 human lung tumor cells in culture. Exp
Cell Res. 210:46–51. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Miyata H, Doki Y, Yamamoto H, Kishi K,
Takemoto H, Fujiwara Y, Yasuda T, Yano M, Inoue M, Shiozaki H, et
al: Overexpression of CDC25B overrides radiation-induced G2-M
arrest and results in increased apoptosis in esophageal cancer
cells. Cancer Res. 61:3188–3193. 2001.PubMed/NCBI
|
30
|
Corbiere C, Liagre B, Terro F and
Beneytout JL: Induction of antiproliferative effect by diosgenin
through activation of p53, release of apoptosis-inducing factor
(AIF) and modulation of caspase-3 activity in different human
cancer cells. Cell Res. 14:188–196. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gottlieb E, Armour SM, Harris MH and
Thompson CB: Mitochondrial membrane potential regulates matrix
configuration and cytochrome c release during apoptosis. Cell Death
Differ. 10:709–717. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gottlieb RA: Mitochondria: Execution
central. FEBS Lett. 482:6–12. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zamzami N, Marchetti P, Castedo M,
Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B and
Kroemer G: Sequential reduction of mitochondrial transmembrane
potential and generation of reactive oxygen species in early
programmed cell death. J Exp Med. 182:367–377. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu X, Kim CN, Yang J, Jemmerson R and
Wang X: Induction of apoptotic program in cell-free extract:
Requirements for dATP and cytochrome C. Cell. 86:147–157. 1996.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H,
Feng Y, Han C, Zhou G, Rigby AC and Sharp FR: Hsp70 promotes
TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa
B survival signaling. Genes Dev. 18:1466–1481. 2004. View Article : Google Scholar : PubMed/NCBI
|