1
|
Cannell IG, Merrick KA, Morandell S, Zhu
CQ, Braun CJ, Grant RA, Cameron ER, Tsao MS, Hemann MT and Yaffe
MB: A pleiotropic RNA-binding protein controls distinct cell cycle
checkpoints to drive resistance of p53-defective tumors to
chemotherapy. Cancer Cell. 28:623–637. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Badjatia N, Park SH, Ambrósio DL, Kirkham
JK and Günzl A: Cyclin-dependent kinase CRK9, required for spliced
leader trans splicing of pre-mRNA in trypanosomes, functions in a
complex with a new L-type cyclin and a kinetoplastid-specific
protein. PLoS Pathog. 12:e10054982016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gaggioli V, Zeiser E, Rivers D, Bradshaw
CR, Ahringer J and Zegerman P: CDK phosphorylation of SLD-2 is
required for replication initiation and germline development in
C. elegans. J Cell Biol. 204:507–522. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vermeulen K, Van Bockstaele DR and
Berneman ZN: The cell cycle: A review of regulation, deregulation
and therapeutic targets in cancer. Cell Prolif. 36:131–149. 2003.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Nurse PM: Nobel lecture. Cyclin dependent
kinases and cell cycle control. Biosci Rep. 22:487–499. 2002.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Arellano M and Moreno S: Regulation of
CDK/cyclin complexes during the cell cycle. Int J Biochem Cell
Biol. 29:559–573. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kontopidis G, Wu SY, Zheleva DI, Taylor P,
McInnes C, Lane DP, Fischer PM and Walkinshaw MD: Structural and
biochemical studies of human proliferating cell nuclear antigen
complexes provide a rationale for cyclin association and inhibitor
design. Proc Natl Acad Sci USA. 102:1871–1876. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Porter LA and Donoghue DJ: Cyclin B1 and
CDK1: Nuclear localization and upstream regulators. Prog Cell Cycle
Res. 5:335–347. 2003.PubMed/NCBI
|
9
|
Yang J, Bardes ES, Moore JD, Brennan J,
Powers MA and Kornbluth S: Control of cyclin B1 localization
through regulated binding of the nuclear export factor CRM1. Genes
Dev. 12:2131–2143. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hagting A, Jackman M, Simpson K and Pines
J: Translocation of cyclin B1 to the nucleus at prophase requires a
phosphorylation-dependent nuclear import signal. Curr Biol.
9:680–689. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ciemerych MA and Sicinski P: Cell cycle in
mouse development. Oncogene. 24:2877–2898. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chang DC, Xu N and Luo KQ: Degradation of
cyclin B is required for the onset of anaphase in Mammalian cells.
J Biol Chem. 278:37865–37873. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Toyoshima-Morimoto F, Taniguchi E, Shinya
N, Iwamatsu A and Nishida E: Polo-like kinase 1 phosphorylates
cyclin B1 and targets it to the nucleus during prophase. Nature.
410:215–220. 2001. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Rosner M, Hanneder M, Siegel N, Valli A
and Hengstschläger M: The tuberous sclerosis gene products hamartin
and tuberin are multifunctional proteins with a wide spectrum of
interacting partners. Mutat Res. 658:234–246. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tee AR, Manning BD, Roux PP, Cantley LC
and Blenis J: Tuberous sclerosis complex gene products, Tuberin and
Hamartin, control mTOR signaling by acting as a GTPase-activating
protein complex toward Rheb. Curr Biol. 13:1259–1268. 2003.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Rosner M, Freilinger A, Hanneder M, Fujita
N, Lubec G, Tsuruo T and Hengstschläger M: p27Kip1 localization
depends on the tumor suppressor protein tuberin. Hum Mol Genet.
16:1541–1556. 2007a. View Article : Google Scholar
|
17
|
Chong-Kopera H, Inoki K, Li Y, Zhu T,
Garcia-Gonzalo FR, Rosa JL and Guan KL: TSC1 stabilizes TSC2 by
inhibiting the interaction between TSC2 and the HERC1 ubiquitin
ligase. J Biol Chem. 281:8313–8316. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Orlova KA and Crino PB: The tuberous
sclerosis complex. Ann N Y Acad Sci. 1184:87–105. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Inoki K, Zhu T and Guan KL: TSC2 mediates
cellular energy response to control cell growth and survival. Cell.
115:577–590. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shaw RJ: LKB1 and AMP-activated protein
kinase control of mTOR signalling and growth. Acta Physiol (Oxf).
196:65–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Manning BD and Cantley LC: United at last:
The tuberous sclerosis complex gene products connect the
phosphoinositide 3-kinase/Akt pathway to mammalian target of
rapamycin (mTOR) signalling. Biochem Soc Trans. 31:573–578. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Rosner M, Freilinger A and Hengstschlager
M: Akt regulates nuclear/cytoplasmic localization of tuberin.
Oncogene. 26:521–531. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma L, Chen Z, Erdjument-Bromage H, Tempst
P and Pandolfi PP: Phosphorylation and functional inactivation of
TSC2 by Erk implications for tuberous sclerosis and cancer
pathogenesis. Cell. 121:179–193. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ma L, Teruya-Feldstein J, Bonner P,
Bernardi R, Franz DN, Witte D, Cordon-Cardo C and Pandolfi PP:
Identification of S664 TSC2 phosphorylation as a marker for
extracellular signal-regulated kinase mediated mTOR activation in
tuberous sclerosis and human cancer. Cancer Res. 67:7106–7112.
2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li Y, Inoki K, Vikis H and Guan KL:
Measurements of TSC2 GAP activity toward Rheb. Methods Enzymol.
407:46–54. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y
and Jiang Y: Rheb activates mTOR by antagonizing its endogenous
inhibitor, FKBP38. Science. 318:977–980. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Beugnet A, Tee AR, Taylor PM and Proud CG:
Regulation of targets of mTOR (mammalian target of rapamycin)
signalling by intracellular amino acid availability. Biochem J.
372:555–566. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wullschleger S, Loewith R and Hall MN: TOR
signaling in growth and metabolism. Cell. 124:471–484. 2006.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Betz C and Hall MN: Where is mTOR and what
is it doing there? J Cell Biol. 203:563–574. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sarbassov DD, Ali SM, Kim DH, Guertin DA,
Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: Rictor, a
novel binding partner of mTOR, defines a rapamycin-insensitive and
raptor-independent pathway that regulates the cytoskeleton. Curr
Biol. 14:1296–1302. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Garami A, Zwartkruis FJ, Nobukuni T,
Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL and
Thomas G: Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP
signaling, is inhibited by TSC1 and 2. Mol Cell. 11:1457–1466.
2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dann SG, Selvaraj A and Thomas G: mTOR
Complex1-S6K1 signaling: At the crossroads of obesity, diabetes and
cancer. Trends Mol Med. 13:252–259. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Parkhitko A, Myachina F, Morrison TA,
Hindi KM, Auricchio N, Karbowniczek M, Wu JJ, Finkel T, Kwiatkowski
DJ, Yu JJ, et al: Tumorigenesis in tuberous sclerosis complex is
autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad
Sci USA. 108:12455–12460. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Klionsky DJ, Abeliovich H, Agostinis P,
Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA,
Ballabio A, et al: Guidelines for the use and interpretation of
assays for monitoring autophagy in higher eukaryotes. Autophagy.
4:151–175. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011. View
Article : Google Scholar : PubMed/NCBI
|
36
|
da Silva E Fidalgo, Ansari SB, Maimaiti J,
Barnes EA, Kong-Beltran M, Donoghue DJ and Porter LA: The tumor
suppressor tuberin regulates mitotic onset through the cellular
localization of cyclin B1. Cell Cycle. 10:3129–3139. 2011.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Zeng LH, Rensing NR, Zhang B, Gutmann DH,
Gambello MJ and Wong M: Tsc2 gene inactivation causes a more severe
epilepsy phenotype than Tsc1 inactivation in a mouse model of
tuberous sclerosis complex. Hum Mol Genet. 20:445–454. 2011.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Curatolo P, Bombardieri R and Jozwiak S:
Tuberous sclerosis. Lancet. 372:657–668. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rennebeck G, Kleymenova EV, Anderson R,
Yeung RS, Artzt K and Walker CL: Loss of function of the tuberous
sclerosis 2 tumor suppressor gene results in embryonic lethality
characterized by disrupted neuroepithelial growth and development.
Proc Natl Acad Sci USA. 95:15629–15634. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wataya-Kaneda M, Tanaka M, Hamasaki T and
Katayama I: Trends in the prevalence of tuberous sclerosis complex
manifestations: An epidemiological study of 166 Japanese patients.
PLoS One. 8:e639102013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kwiatkowski DJ, Palmer MR, Jozwiak S,
Bissler J, Franz D, Segal S, Chen D and Sampson JR: Response to
everolimus is seen in TSC-associated SEGAs and angiomyolipomas
independent of mutation type and site in TSC1 and TSC2. Eur J Hum
Genet. 23:1665–1672. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kohrman MH: Emerging treatments in the
management of tuberous sclerosis complex. Pediatr Neurol.
46:267–275. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ehninger D, de Vries PJ and Silva AJ: From
mTOR to cognition: Molecular and cellular mechanisms of cognitive
impairments in tuberous sclerosis. J Intellect Disabil Res.
53:838–851. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Franz DN, Bissler JJ and McCormack FX:
Tuberous sclerosis complex: Neurological, renal and pulmonary
manifestations. Neuropediatrics. 41:199–208. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bhatia B, Northcott PA, Hambardzumyan D,
Govindarajan B, Brat DJ, Arbiser JL, Holland EC, Taylor MD and
Kenney AM: Tuberous sclerosis complex suppression in cerebellar
development and medulloblastoma: Separate regulation of mammalian
target of rapamycin activity and p27 Kip1 localization. Cancer Res.
69:7224–7234. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Dabora SL, Jozwiak S, Franz DN, Roberts
PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, et
al: Mutational analysis in a cohort of 224 tuberous sclerosis
patients indicates increased severity of TSC2, compared with TSC1,
disease in multiple organs. Am J Hum Genet. 68:64–80. 2001.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Nellist M, Burgers PC, van den Ouweland
AM, Halley DJ and Luider TM: Phosphorylation and binding partner
analysis of the TSC1-TSC2 complex. Biochem Biophys Res Commun.
333:818–826. 2005a. View Article : Google Scholar
|
48
|
Yu Z, Zhang X, Guo H and Bai Y: A novel
TSC2 mutation in a Chinese family with tuberous sclerosis complex.
J Genet. 93:169–172. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kohrman MH: Emerging treatments in the
management of tuberous sclerosis complex. Pediatr Neurol.
46:267–275. 2012. View Article : Google Scholar : PubMed/NCBI
|