1
|
Liu TF and McCall CE: Deacetylation by
SIRT1 reprograms inflammation and cancer. Genes Cancer. 4:135–147.
2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang C, Chen L, Hou X, Li Z, Kabra N, Ma
Y, Nemoto S, Finkel T, Gu W, Cress WD and Chen J: Interactions
between E2F1 and SirT1 regulate apoptotic response to DNA damage.
Nat Cell Biol. 8:1025–1031. 2006. View
Article : Google Scholar : PubMed/NCBI
|
3
|
McCall CE, El Gazzar M, Liu T,
Vachharajani V and Yoza B: Epigenetics, bioenergetics, andmicroRNA
coordinate gene-specific reprogramming during acute systemic
inflammation. J Leukoc Biol. 90:439–446. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hida Y, Kubo Y, Murao K and Arase S:
Strong expression of a longevity-related protein, SIRT1, in Bowen's
disease. Arch Dermatol Res. 299:103–106. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Huffman DM, Grizzle WE, Bamman MM, Kim JS,
Eltoum IA, Elgavish A and Nagy TR: SIRT1 is significantly elevated
in mouse and human prostate cancer. Cancer Res. 67:6612–6618. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Hennig D, Müller S, Wichmann C, Drube S,
Pietschmann K, Pelzl L, Grez M, Bug G, Heinzel T and Krämer OH:
Antagonism between granulocytic maturation and deacetylase
inhibitor-induced apoptosis in acute promyelocytic leukaemia cells.
Br J Cancer. 112:329–337. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jang KY, Hwang SH, Kwon KS, Kim KR, Choi
HN, Lee NR, Kwak JY, Park BH, Park HS, Chung MJ, et al: SIRT1
expression is associated with poor prognosis of diffuse large
B-cell lymphoma. Am J Surg Pathol. 32:1523–1531. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shah ZH, Ahmed SU, Ford JR, Allison SJ,
Knight JR and Milner J: A deacetylase-deficient SIRT1 variant
opposes full-length SIRT1 in regulating tumor suppressor p53 and
governs expression of cancer-related genes. Mol Cell Biol.
32:704–716. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vahtola E, Louhelainen M, Forstén H,
Merasto S, Raivio J, Kaheinen P, Kytö V, Tikkanen I, Levijoki J and
Mervaala E: Sirtuin1-p53, forkhead box O3a, p38 and post-infarct
cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat.
Cardiovasc Diabetol. 9:52010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nemoto S, Fergusson MM and Finkel T:
Nutrient availability regulates SIRT1 through a forkhead-dependent
pathway. Science. 306:2105–2108. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen WY, Wang DH, Yen RC, Luo J, Gu W and
Baylin SB: Tumor suppressor HIC1 directly regulates SIRT1 to
modulate p53-dependent DNA-damage responses. Cell. 123:437–448.
2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mao B, Zhao G, Lv X, Chen HZ, Xue Z, Yang
B, Liu DP and Liang CC: Sirt1 deacetylates c-Myc and promotes
c-Myc/Max association. Int J Biochem Cell Biol. 43:1573–1581. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yamaguchi H, Woods NT, Piluso LG, Lee HH,
Chen J, Bhalla KN, Monteiro A, Liu X, Hung MC and Wang HG: P53
acetylation is crucial for its transcription-independent
proapoptotic functions. J Biol Chem. 284:11171–11183. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Rothmann T, Hengstermann A, Whitaker NJ,
Scheffner M and zur Hausen H: Replication of ONYX-015, a potential
anticancer adenovirus, is independent of p53 status in tumor cells.
J Virol. 72:9470–9478. 1998.PubMed/NCBI
|
16
|
D'Orazi G, Cecchinelli B, Bruno T, Manni
I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal
G, et al: Homeodomain-interacting protein kinase-2 phosphorylates
p53 at Ser 46 and mediates apoptosis. Nat Cell Biol. 4:11–19. 2002.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang S, Song P and Zou MH: Inhibition of
AMP-activated protein kinase α (AMPKα) by doxorubicin accentuates
genotoxic stress and cell death in mouse embryonic fibroblasts and
cardiomyocytes: Role of p53 and SIRT1. J Biol Chem. 287:8001–8012.
2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xie Y, Bulbul MA, Ji L, Inouye CM, Groshen
SG, Tulpule A, O'Malley DP, Wang E and Siddiqi IN: P53 expression
is a strong marker of inferior survival in de novo diffuse large
B-cell lymphoma and may have enhanced negative effect with MYC
coexpression: A single institutional clinicopathologic study. Am J
Clin Pathol. 141:593–604. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ho JS, Ma W, Mao DY and Benchimol S:
P53-dependent transcriptional repression of c-myc is required for
G1 cell cycle arrest. Mol Cell Biol. 25:7423–7431. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ta VB, de Bruijn MJ, ter Brugge PJ, van
Hamburg JP, Diepstraten HJ, van Loo PF, Kersseboom R and Hendriks
RW: Malignant transformation of Slp65-deficient pre-B cells
involves disruption of the Arf-Mdm2-p53 tumor suppressor pathway.
Blood. 115:1385–1393. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sachdeva M, Zhu S, Wu F, Wu H, Walia V,
Kumar S, Elble R, Watabe K and Mo YY: P53 represses c-Myc through
induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA.
106:3207–3212. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Molinuevo R, Freije A, de Pedro I, Stoll
SW, Elder JT and Gandarillas A: FOXM1 allows human keratinocytes to
bypass the oncogene-induced differentiation checkpoint in response
to gain of MYC or loss of p53. Oncogene. 36:956–965. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Tanaka H, Tamura A, Sekai M, Hamazaki Y
and Minato N: Increased c-Myc activity and DNA damage in
hematopoietic progenitors precede myeloproliferative disease in
Spa-1-deficiency. Cancer Sci. 102:784–791. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li L, Osdal T, Ho Y, Chun S, McDonald T,
Agarwal P, Lin A, Chu S, Qi J, Li L, et al: SIRT1 activation by a
c-MYC oncogenic network promotes the maintenance and drug
resistance of human FLT3-ITD acute myeloid leukemia stem cells.
Cell Stem Cell. 15:431–446. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Savage KJ, Johnson NA, Ben-Neriah S,
Connors JM, Sehn LH, Farinha P, Horsman DE and Gascoyne RD: MYC
gene rearrangements are associated with a poor prognosis in diffuse
large B-cell lymphoma patients treated with R-CHOP chemotherapy.
Blood. 114:3533–3537. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu Y, Gong LP, Dong XL and Liu HG:
Detection of C-MYC oncogene translocation and copy number change in
the normal-dysplasia-carcinoma sequence of the larynx by
fluorescence in situ hybridization. Diagn Cytopathol. 41:515–519.
2013. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Balz V, Scheckenbach K, Götte K, Bockmühl
U, Petersen I and Bier H: Is the p53 inactivation frequency in
squamous cell carcinomas of the head and neck underestimated?
Analysis of p53 exons 2–11 and human papillomavirus 16/18 E6
transcripts in 123 unselected tumor specimens. Cancer Res.
63:1188–1191. 2003.PubMed/NCBI
|