Mechanisms of peritoneal dissemination in gastric cancer (Review)
- Authors:
- Feng Sun
- Min Feng
- Wenxian Guan
-
Affiliations: Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China - Published online on: October 9, 2017 https://doi.org/10.3892/ol.2017.7149
- Pages: 6991-6998
This article is mentioned in:
Abstract
Stewart BW and Wild CP: World cancer report 2014. World. 2014. | |
Japanese Gastric Cancer Association Registration Committee, . Maruyama K, Kaminishi M, Hayashi K, Isobe Y, Honda I, Katai H, Arai K, Kodera Y and Nashimoto A: Gastric cancer treated in 1991 in Japan: Data analysis of nationwide registry. Gastric Cancer. 9:51–66. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maehara Y, Hasuda S, Koga T, Tokunaga E, Kakeji Y and Sugimachi K: Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. Br J Surg. 87:353–357. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yashiro M, Chung YS, Nishimura S, Inoue T and Sowa M: Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as ‘soil’ for peritoneal dissemination. Cancer. 77 8 Suppl:S1668–S1675. 1996. View Article : Google Scholar | |
Li Z, Miao Z, Jin G, Li X, Li H, Lv Z and Xu HM: big-h3 supports gastric cancer cell adhesion, migration and proliferation in peritoneal carcinomatosis. Mol Med Rep. 6:558–564. 2012. View Article : Google Scholar : PubMed/NCBI | |
Paget S: The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI | |
Yonemura Y, Kawamura T, Bandou E, Tsukiyama G, Endou Y and Miura M: The natural history of free cancer cells in the peritoneal cavity. Recent Results Cancer Res. 169:11–23. 2007.PubMed/NCBI | |
Bando E, Yonemura Y, Takeshita Y, Taniguchi K, Yasui T, Yoshimitsu Y, Fushida S, Fujimura T, Nishimura G and Miwa K: Intraoperative lavage for cytological examination in 1,297 patients with gastric carcinoma. Am J Surg. 178:256–262. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yonemura Y, Endou Y, Kimura K, Fushida S, Bandou E, Taniguchi K, Kinoshita K, Ninomiya I, Sugiyama K, Heizmann CW, et al: Inverse expression of S100A4 and E-cadherin is associated with metastatic potential in gastric cancer. Clin Cancer Res. 6:4234–4242. 2000.PubMed/NCBI | |
Marutsuka T, Shimada S, Shiomori K, Hayashi N, Yagi Y, Yamane T and Ogawa M: Mechanisms of peritoneal metastasis after operation for non-serosa-invasive gastric carcinoma: An ultrarapid detection system for intraperitoneal free cancer cells and a prophylactic strategy for peritoneal metastasis. Clin Cancer Res. 9:678–685. 2003.PubMed/NCBI | |
Takebayashi K, Murata S, Yamamoto H, Ishida M, Yamaguchi T, Kojima M, Shimizu T, Shiomi H, Sonoda H, Naka S, et al: Surgery-induced peritoneal cancer cells in patients who have undergone curative gastrectomy for gastric cancer. Ann Surg Oncol. 21:1991–1997. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zlotnik A: Chemokines and cancer. Int J Cancer. 119:2026–2029. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H and Miyasaka M: Chemokines in tumor progression and metastasis. Cancer Sci. 96:317–322. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yoshie O: Immune chemokines and their receptors: The key elements in the genesis, homeostasis and function of the immune system. Springer Semin Immunopathol. 22:371–391. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yasumoto K, Koizumi K, Kawashima A, Saitoh Y, Arita Y, Shinohara K, Minami T, Nakayama T, Sakurai H, Takahashi Y, et al: Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res. 66:2181–2187. 2006. View Article : Google Scholar : PubMed/NCBI | |
Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI | |
Koizumi K, Hojo S, Akashi T, Yasumoto K and Saiki I: Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci. 98:1652–1658. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lv ZD, Na D, Liu FN, Du ZM, Sun Z, Li Z, Ma XY, Wang ZN and Xu HM: Induction of gastric cancer cell adhesion through transforming growth factor-beta1-mediated peritoneal fibrosis. J Exp Clin Cancer Res. 29:1392010. View Article : Google Scholar : PubMed/NCBI | |
Kiyasu Y, Kaneshima S and Koga S: Morphogenesis of peritoneal metastasis in human gastric cancer. Cancer Res. 41:1236–1239. 1981.PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Margetts PJ, Oh KH and Kolb M: Transforming growth factor-beta: Importance in long-term peritoneal membrane changes. Perit Dial Int. 25 Suppl 3:S15–S17. 2005.PubMed/NCBI | |
Massagué J: TGFβ signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gordon KJ and Blobe GC: Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 1782:197–228. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tsukada T, Fushida S, Harada S, Yagi Y, Kinoshita J, Oyama K, Tajima H, Fujita H, Ninomiya I, Fujimura T and Ohta T: The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer. Int J Oncol. 41:476–482. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Mao H, Nie J, Chen W, Yang Q, Dong X and Yu X: Transforming growth factor {beta}1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells. Perit Dial Int. 28 Suppl 3:S88–S95. 2008.PubMed/NCBI | |
Lv ZD, Wang HB, Li FN, Wu L, Liu C, Nie G, Kong B, Qu HL and Li JG: TGF-β1 induces peritoneal fibrosis by activating the Smad2 pathway in mesothelial cells and promotes peritoneal carcinomatosis. Int J Mol Med. 29:373–379. 2012.PubMed/NCBI | |
Jiang CG, Lv L, Liu FR, Wang ZN, Na D, Li F, Li JB, Sun Z and Xu HM: Connective tissue growth factor is a positive regulator of epithelial-mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells. Cytokine. 61:173–180. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okazaki M, Fushida S, Harada S, Tsukada T, Kinoshita J, Oyama K, Tajima H, Ninomiya I, Fujimura T and Ohta T: The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer Lett. 355:46–53. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shinbo T, Fushida S, Tsukada T, Harada S, Kinoshita J, Oyama K, Okamoto K, Ninomiya I, Takamura H, Kitagawa H, et al: Protein-bound polysaccharide K suppresses tumor fibrosis in gastric cancer by inhibiting the TGF-b signaling pathway. Oncol Rep. 33:553–558. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Muguruma K, Ohira M, Kubo N, Yamashita Y, Maeda K, Sawada T and Hirakawa K: Impact of adjuvant immunochemotherapy using protein-bound polysaccharide-K on overall survival of patients with gastric cancer. Anticancer Res. 32:3427–3433. 2012.PubMed/NCBI | |
Ono Y, Hayashida T, Konagai A, Okazaki H, Miyao K, Kawachi S, Tanabe M, Shinoda M, Jinno H, Hasegawa H, et al: Direct inhibition of the transforming growth factor-β pathway by protein-bound polysaccharide through inactivation of Smad2 signaling. Cancer Sci. 103:317–324. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakashio T, Narita T, Akiyama S, Kasai Y, Fujiwara M, Ito K, Takagi H and Kanngi R: Adhesion of human gastric and pancreatic cancer cells to peritoneal mesothelial cells is mediated by CD44 and beta(1) integrin. Int J Oncol. 10:183–188. 1997.PubMed/NCBI | |
Takatsuki H, Komatsu S, Sano R, Takada Y and Tsuji T: Adhesion of gastric carcinoma cells to peritoneum mediated by alpha3beta1 integrin (VLA-3). Cancer Res. 64:6065–6070. 2004. View Article : Google Scholar : PubMed/NCBI | |
Giancotti FG and Ruoslahti E: Integrin signaling. Science. 285:1028–1032. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fukuda K, Saikawa Y, Yagi H, Wada N, Takahashi T and Kitagawa Y: Role of integrin a1 subunits in gastric cancer patients with peritoneal dissemination. Mol Med Rep. 5:336–340. 2012.PubMed/NCBI | |
Nishimura S, Chung YS, Yashiro M, Inoue T and Sowa M: Role of alpha 2 beta 1- and alpha 3 beta 1-integrin in the peritoneal implantation of scirrhous gastric carcinoma. Br J Cancer. 74:1406–1412. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chen CN, Chang CC, Lai HS, Jeng YM, Chen CI, Chang KJ, Lee PH and Lee H: Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin a3b1-dependent adhesion. Gastric Cancer. 18:504–515. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yonemura Y, Endo Y, Fujita H, Kimura K, Sugiyama K, Momiyama N, Shimada H and Sasaki T: Inhibition of peritoneal dissemination in human gastric cancer by MMP-7-specific antisense oligonucleotide. J Exp Clin Cancer Res. 20:205–212. 2001.PubMed/NCBI | |
Li Z, Zhang D, Zhang H, Miao Z, Tang Y, Sun G and Dai D: Prediction of peritoneal recurrence by the mRNA level of CEA and MMP-7 in peritoneal lavage of gastric cancer patients. Tumour Biol. 35:3463–3470. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mimori K, Fukagawa T, Kosaka Y, Ishikawa K, Iwatsuki M, Yokobori T, Hirasaki S, Takatsuno Y, Sakashita H, Ishii H, et al: A large-scale study of MT1-MMP as a marker for isolated tumor cells in peripheral blood and bone marrow in gastric cancer cases. Ann Surg Oncol. 15:2934–2942. 2008. View Article : Google Scholar : PubMed/NCBI | |
Visse R and Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res. 92:827–839. 2003. View Article : Google Scholar : PubMed/NCBI | |
Miyagi M, Aoyagi K, Kato S and Shirouzu K: The TIMP-1 gene transferred through adenovirus mediation shows a suppressive effect on peritoneal metastases from gastric cancer. Int J Clin Oncol. 12:17–24. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa T, Tsuburaya A, Kobayashi O, Sairenji M, Motohashi H, Yanoma S and Noguchi Y: Intratumoral concentrations of tissue inhibitor of matrix metalloproteinase 1 in patients with gastric carcinoma a new biomartker for invasion and its impact on survival. Cancer. 91:1739–1744. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gentile A, Trusolino L and Comoglio PM: The met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 27:85–94. 2008. View Article : Google Scholar : PubMed/NCBI | |
Trusolino L, Bertotti A and Comoglio PM: MET signalling: Principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 11:834–848. 2010. View Article : Google Scholar : PubMed/NCBI | |
Toiyama Y, Yasuda H, Saigusa S, Matushita K, Fujikawa H, Tanaka K, Mohri Y, Inoue Y, Goel A and Kusunoki M: Co-expression of hepatocyte growth factor and c-Met predicts peritoneal dissemination established by autocrine hepatocyte growth factor/c-Met signaling in gastric cancer. Int J Cancer. 130:2912–2921. 2012. View Article : Google Scholar : PubMed/NCBI | |
Binder DK and Scharfman HE: Brain-derived neurotrophic factor. Growth Factors. 22:123–131. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A, Hiro J, Saigusa S, Toiyama Y, Ohi M, Uchida K, et al: Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer. 108:121–130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perretti M and D'Acquisto F: Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 9:62–70. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, et al: Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest. 123:443–454. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT, Huang HY, Hua KT and Kuo ML: Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer. 118:5757–5767. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aoyagi K, Kouhuji K, Yano S, Miyagi M, Imaizumi T, Takeda J and Shirouzu K: VEGF significance in peritoneal recurrence from gastric cancer. Gastric Cancer. 8:155–163. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shimoda M, Mellody KT and Orimo A: Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol. 21:19–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gabbiani G, Ryan GB and Majne G: Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 27:549–550. 1971. View Article : Google Scholar : PubMed/NCBI | |
LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H and Kalluri R: Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 19:1047–1053. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fuyuhiro Y, Yashiro M, Noda S, Matsuoka J, Hasegawa T, Kato Y, Sawada T and Hirakawa K: Cancer-associated orthotopic myofibroblasts stimulates the motility of gastric carcinoma cells. Cancer Sci. 103:797–805. 2012. View Article : Google Scholar : PubMed/NCBI | |
Satoyoshi R, Aiba N, Yanagihara K, Yashiro M and Tanaka M: Tks5 activation in mesothelial cells creates invasion front of peritoneal carcinomatosis. Oncogene. 34:3176–3187. 2015. View Article : Google Scholar : PubMed/NCBI | |
Terai S, Fushida S, Tsukada T, Kinoshita J, Oyama K, Okamoto K, Makino I, Tajima H, Ninomiya I, Fujimura T, et al: Bone marrow derived ‘fibrocytes’ contribute to tumor proliferation and fibrosis in gastric cancer. Gastric Cancer. 18:306–313. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ostman A and Augsten M: Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr Opin Genet Dev. 19:67–73. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Chen X, Zhou Q, Li P, Yu B, Li J, Qu Y, Yan J, Yu Y, Yan M, et al: Hepatocyte growth factor activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer. Cancer Lett. 335:128–135. 2013. View Article : Google Scholar : PubMed/NCBI | |
Satoyoshi R, Kuriyama S, Aiba N, Yashiro M and Tanaka M: Asporin activates coordinated invasion of scirrhous gastric cancer and cancer-associated fibroblasts. Oncogene. 34:650–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi Y, Kunita A, Iwata C, Komura D, Nishiyama T, Shimazu K, Takeshita K, Shibahara J, Kii I, Morishita Y, et al: The niche component periostin is produced by cancer-associated fibroblasts, supporting growth of gastric cancer through ERK activation. Am J Pathol. 184:859–870. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakajima M, Kizawa H, Saitoh M, Kou I, Miyazono K and Ikegawa S: Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem. 282:32185–32192. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Liu BA: Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin. World J Gastroenterol. 17:2674–2680. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Fukui H, Hara K, Zhang X, Kitayama Y, Eda H, Tomita T, Oshima T, Kikuchi S, Watari J, et al: FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells. BMC Cancer. 15:3332015. View Article : Google Scholar : PubMed/NCBI | |
Sung CO, Lee KW, Han S and Kim SH: Twist1 is up-regulated in gastric cancer-associated fibroblasts with poor clinical outcomes. Am J Pathol. 179:1827–1838. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fukui H, Zhang X, Sun C, Hara K, Kikuchi S, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J, et al: IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. Br J Cancer. 111:763–771. 2014. View Article : Google Scholar : PubMed/NCBI | |
He XJ, Tao HQ, Hu ZM, Ma YY, Xu J, Wang HJ, Xia YJ, Li L, Fei BY, Li YQ and Chen JZ: Expression of galectin-1 in carcinoma-associated fibroblasts promotes gastric cancer cell invasion through upregulation of integrin b1. Cancer Sci. 105:1402–1410. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Chen X, Li J, Qu Y, Su L, Peng Y, Huang J, Yan J, Yu Y, Gu Q, et al: Stromal fibroblasts in the microenvironment of gastric carcinomas promote tumor metastasis via upregulating TAGLN expression. BMC Cell Biol. 14:172013. View Article : Google Scholar : PubMed/NCBI | |
Shimotsuma M, Shields JW, Simpson-Morgan MW, Sakuyama A, Shirasu M, Hagiwara A and Takahashi T: Morpho-physiological function and role of omental milky spots as omentum-associated lymphoid tissue (OALT) in the peritoneal cavity. Lymphology. 26:90–101. 1993.PubMed/NCBI | |
Hagiwara A, Takahashi T, Sawai K, Taniguchi H, Shimotsuma M, Okano S, Sakakura C, Tsujimoto H, Osaki K, Sasaki S, et al: Milky spots as the implantation site for malignant cells in peritoneal dissemination in mice. Cancer Res. 53:687–692. 1993.PubMed/NCBI | |
Beelen RH, Fluitsma DM and Hoefsmit EC: The cellular composition of omentum milky spots and the ultrastructure of milky spot macrophages and reticulum cells. J Reticuloendothel Soc. 28:585–599. 1980.PubMed/NCBI | |
Liebermann-Meffert D: The greater omentum. Anatomy, embryology, and surgical applications. Surg Clin North Am. 80(275–293): xii2000. | |
Oosterling SJ, van der Bij GJ, Bögels M, van der Sijp JR, Beelen RH, Meijer S and van Egmond M: Insufficient ability of omental milky spots to prevent peritoneal tumor outgrowth supports omentectomy in minimal residual disease. Cancer Immunol Immunother. 55:1043–1051. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Johkura K, Liang Y, Teng R, Ogiwara N, Okouchi Y, Asanuma K and Sasaki K: Biodefense function of omental milky spots through cell adhesion molecules and leukocyte proliferation. Cell Tissue Res. 310:321–330. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu XY, Miao ZF, Zhao TT, Wang ZN, Xu YY, Gao J, Wu JH, You Y, Xu H and Xu HM: Milky spot macrophages remodeled by gastric cancer cells promote peritoneal mesothelial cell injury. Biochem Biophys Res Commun. 439:378–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bingle L, Brown NJ and Lewis CE: The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. J Pathol. 196:254–265. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Hu X, Zhang J, Huang G and Zhang Y: The role of the CCL22-CCR4 axis in the metastasis of gastric cancer cells into omental milky spots. J Transl Med. 12:2672014. View Article : Google Scholar : PubMed/NCBI | |
Gerber SA, Rybalko VY, Bigelow CE, Lugade AA, Foster TH, Frelinger JG and Lord EM: Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol. 169:1739–1752. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miao ZF, Wang ZN, Zhao TT, Xu YY, Gao J, Miao F and Xu HM: Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1a. Stem Cells. 32:3062–3074. 2014. View Article : Google Scholar : PubMed/NCBI | |
Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zheng B, Liang L, Huang S, Zha R, Liu L, Jia D, Tian Q, Wang Q, Wang C, Long Z, et al: MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene. 31:4509–4516. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Cao Y, Jie Z, Liu Y, Li Y, Li J, Zhu G, Liu Z, Tu Y, Peng G, et al: miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett. 323:41–47. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM and Guo G: MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 34:2556–2565. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurashige J, Mima K, Sawada G, Takahashi Y, Eguchi H, Sugimachi K, Mori M, Yanagihara K, Yashiro M, Hirakawa K, et al: Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis. 36:133–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hashiguchi Y, Nishida N, Mimori K, Sudo T, Tanaka F, Shibata K, Ishii H, Mochizuki H, Hase K, Doki Y and Mori M: Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol. 40:1477–1482. 2012.PubMed/NCBI | |
Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K and Mochizuki T: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI | |
Takei Y, Takigahira M, Mihara K, Tarumi Y and Yanagihara K: The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer. Cancer Res. 71:1442–1453. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miyake S, Kitajima Y, Nakamura J, Kai K, Yanagihara K, Tanaka T, Hiraki M, Miyazaki K and Noshiro H: HIF-1a is a crucial factor in the development of peritoneal dissemination via natural metastatic routes in scirrhous gastric cancer. Int J Oncol. 43:1431–1440. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH and Semenza GL: Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 66:2725–2731. 2006. View Article : Google Scholar : PubMed/NCBI | |
Funasaka T and Raz A: The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev. 26:725–735. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lu X and Kang Y: Hypoxia and hypoxia-inducible factors: Master regulators of metastasis. Clin Cancer Res. 16:5928–5935. 2010. View Article : Google Scholar : PubMed/NCBI | |
Silverman PM: The subperitoneal space: Mechanisms of tumour spread in the peritoneal cavity, mesentery, and omentum. Cancer Imaging. 4:25–29. 2003. View Article : Google Scholar : PubMed/NCBI |