Therapeutic strategies against cancer stem cells in human colorectal cancer (Review)
- Authors:
- Magdalena Szaryńska
- Agata Olejniczak
- Jarosław Kobiela
- Piotr Spychalski
- Zbigniew Kmieć
-
Affiliations: Department of Histology, Medical University of Gdańsk, 80‑210 Gdańsk, Poland, Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80‑214 Gdańsk, Poland - Published online on: October 23, 2017 https://doi.org/10.3892/ol.2017.7261
- Pages: 7653-7668
-
Copyright: © Szaryńska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA and Abreu JG: Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. Int J Mol Sci. 15:12094–12106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Manhas J, Bhattacharya A, Agrawal SK, Gupta B, Das P, Deo SV, Pal S and Sen S: Characterization of cancer stem cells from different grades of human colorectal cancer. Tumour Biol. 37:14069–14081. 2016. View Article : Google Scholar : PubMed/NCBI | |
Di Franco S, Todaro M, Dieli F and Stassi G: Colorectal cancer defeating? Mol Aspects Med. 39:61–81. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, et al: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 351:337–345. 2004. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Cervantes A, Nordlinger B and Arnold D; ESMO Guidelines Working Group, : Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 25 Suppl 3:iii1–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taieb J, Tabernero J, Mini E, Subtil F, Folprecht G, Van Laethem JL, Thaler J, Bridgewater J, Petersen LN, Blons H, et al: Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): An open-label, randomised phase 3 trial. Lancet Oncol. 15:862–873. 2014. View Article : Google Scholar : PubMed/NCBI | |
Binefa G, Rodríguez-Moranta F, Teule A and Medina-Hayas M: Colorectal cancer: From prevention to personalized medicine. World J Gastroenterol. 20:6786–6808. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, Becker H, Raab HR, Villanueva MT, Witzigmann H, et al: Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: Results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 30:1926–1933. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khan K, Wale A, Brown G and Chau I: Colorectal cancer with liver metastases: Neoadjuvant chemotherapy, surgical resection first or palliation alone? World J Gastroenterol. 20:12391–12406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paldino E, Tesori V, Casalbore P, Gasbarrini A and Puglisi MA: Tumor initiating cells and chemoresistance: Which is the best strategy to target colon cancer stem cells? Biomed Res Int 2014. 8598712014. | |
O'Brien CA, Pollett A, Gallinger S and Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106–110. 2007. View Article : Google Scholar : PubMed/NCBI | |
Puglisi MA, Barba M, Corbi M, Errico MF, Giorda E, Saulnier N, Boninsegna A, Piscaglia AC, Carsetti R, Cittadini A, et al: Identification of Endothelin-1 and NR4A2 as CD133-regulated genes in colon cancer cells. J Pathol. 225:305–314. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C and De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, et al: CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 118:2111–2120. 2008.PubMed/NCBI | |
Todaro M, Perez Alea M, Scopelliti A, Medema JP and Stassi G: IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle. 7:309–313. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS and Boman BM: Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69:3382–3389. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin SP, Lee YT, Yang SH, Miller SA, Chiou SH, Hung MC and Hung SC: Colon cancer stem cells resist antiangiogenesis therapy-induced apoptosis. Cancer Lett. 328:226–234. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z and Huang J: Intestinal stem cells-types and markers. Cell Biol Int. 37:406–414. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G II, Samuel S, Kim MP, Lim SJ and Ellis LM: Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 69:1951–1957. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang EH and Wicha MS: Colon cancer stem cells: Implications for prevention and therapy. Trends Mol Med. 14:503–509. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu ZQ, Zhang C, Wang H, Lao XY, Chai R, Gao XH, Cao GW and Fu CG: Downregulation of ATP-binding cassette subfamily C member 4 increases sensitivity to neoadjuvant radiotherapy for locally advanced rectal carcinoma. Dis Colon Rectum. 56:600–608. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kozovska Z, Gabrisova V and Kucerova L: Colon cancer: Cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother. 68:911–916. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G and Medema JP: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 105:pp. 13427–13432. 2008; View Article : Google Scholar : PubMed/NCBI | |
Ong CW, Kim LG, Kong HH, Low LY, Iacopetta B, Soong R and Salto-Tellez M: CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod Pathol. 23:450–457. 2010. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Shi L, Wang T, Liu Z and Wang Z: Nanog siRNA plus cisplatin may enhance the sensitivity of chemotherapy in esophageal cancer. J Cancer Res Clin Oncol. 138:1759–1767. 2012. View Article : Google Scholar : PubMed/NCBI | |
Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y and Chen Q: CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 14:6751–6760. 2008. View Article : Google Scholar : PubMed/NCBI | |
Berretta M, Alessandrini L, De Divitiis C, Nasti G, Lleshi A, Di Francia R, Facchini G, Cavaliere C, Buonerba C and Canzonieri V: Serum and tissue markers in colorectal cancer: State of art. Crit Rev Oncol Hematol. 111:103–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y and Tsujiuchi T: Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep. 24:501–505. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB and Gallick GE: ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One. 6:e206362011. View Article : Google Scholar : PubMed/NCBI | |
Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD and Vasiliou V: Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev. 64:520–539. 2012. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z, Stass SA and Jiang F: Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev. 19:327–337. 2010. View Article : Google Scholar : PubMed/NCBI | |
Croker AK and Allan AL: Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat. 133:75–87. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nowak D, Stewart D and Koeffler HP: Differentiation therapy of leukemia: 3 decades of development. Blood. 113:3655–3665. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chung SS, Oliva B, Dwabe S and Vadgama JV: Combination treatment with flavonoid morin and telomerase inhibitor MST-312 reduces cancer stem cell traits by targeting STAT3 and telomerase. Int J Oncol. 49:487–498. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martino-Echarri E, Henderson BR and Brocardo MG: Targeting the DNA replication checkpoint by pharmacologic inhibition of Chk1 kinase: A strategy to sensitize APC mutant colon cancer cells to 5-fluorouracil chemotherapy. Oncotarget. 5:9889–9900. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pulito C, Donzelli S, Muti P, Puzzo L, Strano S and Blandino G: microRNAs and cancer metabolism reprogramming: The paradigm of metformin. Ann Transl Med. 2:582014.PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zubeldia IG, Bleau AM, Redrado M, Serrano D, Agliano A, Gil-Puig C, Vidal-Vanaclocha F, Lecanda J and Calvo A: Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144. Exp Cell Res. 319:12–22. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brenner H, Kloor M and Pox CP: Colorectal cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Sousa E, Melo F and Vermeulen L: Wnt signaling in cancer stem cell biology. Cancers (Basel). 8:pii: E602016. View Article : Google Scholar | |
Anastas JN and Moon RT: WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 13:11–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wierzbicki PM and Rybarczyk A: The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol. 53:105–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD and de Sauvage FJ: A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 478:255–259. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, Su N, Luo Y, Heilshorn SC, Amieva MR, et al: The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA. 109:pp. 466–471. 2012; View Article : Google Scholar : PubMed/NCBI | |
Kim JS, Crooks H, Foxworth A and Waldman T: Proof-of-principle: Oncogenic beta-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol Cancer Ther. 1:1355–1359. 2002.PubMed/NCBI | |
Huynh N, Shulkes A, Baldwin G and He H: Up-regulation of stem cell markers by P21-activated kinase 1 contributes to 5-fluorouracil resistance of colorectal cancer. Cancer Biol Ther. 17:813–823. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, Jernigan KK, Meyers KC, Hang BI, Waterson AG, et al: Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol. 6:829–836. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, et al: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 5:100–107. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009. View Article : Google Scholar : PubMed/NCBI | |
Riffell JL, Lord CJ and Ashworth A: Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family. Nat Rev Drug Discov. 11:923–936. 2012. View Article : Google Scholar : PubMed/NCBI | |
Polakis P: Drugging Wnt signalling in cancer. EMBO J. 31:2737–2746. 2012. View Article : Google Scholar : PubMed/NCBI | |
Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, Paulsen JE, Pedersen NM, Eide TJ, Machonova O, et al: A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 72:2822–2832. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, et al: A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73:3132–3144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Katavolos P, Nguyen T, Lau T, Boggs J, Sambrone A, Kan D, Merchant M, Harstad E, Diaz D, et al: Tankyrase inhibition causes reversible intestinal toxicity in mice with a therapeutic index <1. Toxicol Pathol. 44:267–278. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lenz HJ and Kahn M: Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci. 105:1087–1092. 2014. View Article : Google Scholar : PubMed/NCBI | |
Duchartre Y, Kim YM and Kahn M: The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP and Birchmeier W: A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 76:891–901. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aguilera Ó, González-Sancho JM, Zazo S, Rincón R, Fernández AF, Tapia O, Canals F, Morte B, Calvanese V, Orgaz JL, et al: Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget. 6:5903–5917. 2015. View Article : Google Scholar : PubMed/NCBI | |
González-Sancho JM, Aguilera O, García JM, Pendás-Franco N, Peña C, Cal S, García de Herreros A, Bonilla F and Muñoz A: The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene. 24:1098–1103. 2005. View Article : Google Scholar : PubMed/NCBI | |
Qi L, Sun B, Liu Z, Li H, Gao J and Leng X: Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression. Cancer Sci. 103:828–835. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Olmeda D and Cano A: Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Sun B, Qi L, Li Y, Zhao X, Zhang D and Zhang Y: Dickkopf-1 expression is down-regulated during the colorectal adenoma-carcinoma sequence and correlates with reduced microvessel density and VEGF expression. Histopathology. 67:158–166. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernández-Majada V, Grilli A, López-Bigas N, Bellora N, Albà MM, Torres F, et al: Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA. 106:pp. 6315–6320. 2009; View Article : Google Scholar : PubMed/NCBI | |
Atashpour S, Fouladdel S, Movahhed TK, Barzegar E, Ghahremani MH, Ostad SN and Azizi E: Quercetin induces cell cycle arrest and apoptosis in CD133(+) cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. Iran J Basic Med Sci. 18:635–643. 2015.PubMed/NCBI | |
Temraz S, Mukherji D and Shamseddine A: Potential targets for colorectal cancer prevention. Int J Mol Sci. 14:17279–17303. 2013. View Article : Google Scholar : PubMed/NCBI | |
Johnson JL, Rupasinghe SG, Stefani F, Schuler MA and Gonzalez de Mejia E: Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food. 14:325–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ning Y, Zhang W, Hanna DL, Yang D, Okazaki S, Berger MD, Miyamoto Y, Suenaga M, Schirripa M, El-Khoueiry A and Lenz HJ: Clinical relevance of EMT and stem-like gene expression in circulating tumor cells of metastatic colorectal cancer patients. Pharmacogenomics J. Aug 9–2016.(Epub ahead of print). View Article : Google Scholar | |
Rajamanickam S, Velmurugan B, Kaur M, Singh RP and Agarwal R: Chemoprevention of intestinal tumorigenesis in APCmin/+ mice by silibinin. Cancer Res. 70:2368–2378. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kaur M, Velmurugan B, Tyagi A, Agarwal C, Singh RP and Agarwal R: Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia. 12:415–424. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hoh C, Boocock D, Marczylo T, Singh R, Berry DP, Dennison AR, Hemingway D, Miller A, West K, Euden S, et al: Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: Silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin Cancer Res. 12:2944–2950. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Raina K, Agarwal C and Agarwal R: Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals. Oncotarget. 5:4972–4989. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang ML, Chiou SH and Wu CW: Targeting cancer stem cells: Emerging role of Nanog transcription factor. Onco Targets Ther. 6:1207–1220. 2013.PubMed/NCBI | |
Ibrahim EE, Babaei-Jadidi R, Saadeddin A, Spencer-Dene B, Hossaini S, Abuzinadah M, Li N, Fadhil W, Ilyas M, Bonnet D and Nateri AS: Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells. 30:2076–2087. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Espinoza LA, Kinders RJ, Lawrence SM, Pfister TD, Zhou M, Veenstra TD, Thorgeirsson SS and Jessup JM: NANOG modulates stemness in human colorectal cancer. Oncogene. 32:4397–4405. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee TK, Castilho A, Cheung VC, Tang KH, Ma S and Ng IO: CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 9:50–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
Niu CS, Li DX, Liu YH, Fu XM, Tang SF and Li J: Expression of NANOG in human gliomas and its relationship with undifferentiated glioma cells. Oncol Rep. 26:593–601. 2011.PubMed/NCBI | |
Zhou X, Zhou YP, Huang GR, Gong BL, Yang B, Zhang DX, Hu P and Xu SR: Expression of the stem cell marker, Nanog, in human endometrial adenocarcinoma. Int J Gynecol Pathol. 30:262–270. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bussolati B, Bruno S, Grange C, Ferrando U and Camussi G: Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 22:3696–3705. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, Repass J, Zaehres H, Shen JJ and Tang DG: NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 30:3833–3845. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I and Ruiz i Altaba A: NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 29:2659–2674. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meng HM, Zheng P, Wang XY, Liu C, Sui HM, Wu SJ, Zhou J, Ding YQ and Li J: Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther. 9:295–302. 2010. View Article : Google Scholar : PubMed/NCBI | |
Özgül Özdemir RB, Özdemir AT, Oltulu F, Kurt K, Yiğittürk G and Kirmaz C: A comparison of cancer stem cell markers and nonclassical major histocompatibility complex antigens in colorectal tumor and noncancerous tissues. Ann Diagn Pathol. 25:60–63. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han J, Zhang F, Yu M, Zhao P, Ji W, Zhang H, Wu B, Wang Y and Niu R: RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett. 321:80–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choi SC, Choi JH, Park CY, Ahn CM, Hong SJ and Lim DS: Nanog regulates molecules involved in stemness and cell cycle-signaling pathway for maintenance of pluripotency of P19 embryonal carcinoma stem cells. J Cell Physiol. 227:3678–3692. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mattoo AR, Zhang J, Espinoza LA and Jessup JM: Inhibition of NANOG/NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetics. Clin Cancer Res. 20:5446–5455. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS and Wu CW: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70:10433–10444. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pan Q, Meng L, Ye J, Wei X, Shang Y, Tian Y, He Y, Peng Z, Chen L, Chen W, et al: Transcriptional repression of miR-200 family members by Nanog in colon cancer cells induces epithelial-mesenchymal transition (EMT). Cancer Lett. 392:26–38. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abetov D, Mustapova Z, Saliev T and Bulanin D: Biomarkers and signaling pathways of colorectal cancer stem cells. Tumour Biol. 36:1339–1353. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yokobori T and Nishiyama M: TGF-β signaling in gastrointestinal cancers: Progress in basic and clinical research. J Clin Med. 6:pii: E112017. View Article : Google Scholar | |
Gil-Guerrero L, Dotor J, Huibregtse IL, Casares N, López-Vázquez AB, Rudilla F, Riezu-Boj JI, López-Sagaseta J, Hermida J, Van Deventer S, et al: In vitro and in vivo down-regulation of regulatory T cell activity with a peptide inhibitor of TGF-beta1. J Immunol. 181:126–135. 2008. View Article : Google Scholar : PubMed/NCBI | |
Llopiz D, Dotor J, Casares N, Bezunartea J, Díaz-Valdés N, Ruiz M, Aranda F, Berraondo P, Prieto J, Lasarte JJ, et al: Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy. Int J Cancer. 125:2614–2623. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Zubeldia I, Dotor J, Redrado M, Bleau AM, Manrique I, de Aberasturi AL, Villalba M and Calvo A: Co-migration of colon cancer cells and CAFs induced by TGFβ1 enhances liver metastasis. Cell Tissue Res. 359:829–839. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhan J, Yang M, Zhang J, Guo Y, Liu W and Zhang H: Kindler syndrome protein Kindlin-1 is mainly expressed in adult tissues originating from ectoderm/endoderm. Sci China Life Sci. 58:432–441. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kong J, Du J, Wang Y, Yang M, Gao J, Wei X, Fang W, Zhan J and Zhang H: Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells. Oncotarget. 7:76224–76237. 2016.PubMed/NCBI | |
Karagiannis GS, Afaloniati H, Karamanavi E, Poutahidis T and Angelopoulou K: BMP pathway suppression is an early event in inflammation-driven colon neoplasmatogenesis of uPA-deficient mice. Tumour Biol. 37:2243–2255. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J and Waldman T: Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res. 62:2744–2748. 2002.PubMed/NCBI | |
Lubbe SJ, Pittman AM, Matijssen C, Twiss P, Olver B, Lloyd A, Qureshi M, Brown N, Nye E, Stamp G, et al: Evaluation of germline BMP4 mutation as a cause of colorectal cancer. Hum Mutat. 32:E1928–E1938. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, et al: Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA. 104:pp. 15418–15423. 2007; View Article : Google Scholar : PubMed/NCBI | |
Jin X, Chen Z, Xiang L, Luo Q, Guo Z, Ding X and Jin X: Colorectal polyp model established by transplacental BMP4 RNAi. Mol Med Rep. 10:33–38. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dou J and Gu N: Emerging strategies for the identification and targeting of cancer stem cells. Tumour Biol. 31:243–253. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L, Gulotta G, Dieli F, de Maria R and Stassi G: Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology. 140:297–309. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Xie J, Gu EL, Huang Y, Qu Y, Xu AP, Zhu Y and Wang H: Common genetic variant on BMP4 contributes to colorectal adenoma and cancer: A meta-analysis based on 15 studies. Cytokine. 72:154–159. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Chen GB, Huang XX, Xiao CX, Wang HH, Li YS, Zhang JF, Li S, Xia Y, Ren JL and Guleng B: Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth. Oncotarget. 6:20540–20554. 2015. View Article : Google Scholar : PubMed/NCBI | |
Halbrooks PJ, Ding R, Wozney JM and Bain G: Role of RGM coreceptors in bone morphogenetic protein signaling. J Mol Signal. 2:42007. View Article : Google Scholar : PubMed/NCBI | |
Catalano V, Dentice M, Ambrosio R, Luongo C, Carollo R, Benfante A, Todaro M, Stassi G and Salvatore D: Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling. Cancer Res. 76:1237–1244. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto S and Rosenberg DW: Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci. 102:1938–1942. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sikandar SS, Pate KT, Anderson S, Dizon D, Edwards RA, Waterman ML and Lipkin SM: NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res. 70:1469–1478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S and Egan SE: Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol. 33:1223–1229. 2008.PubMed/NCBI | |
Fre S, Pallavi SK, Huyghe M, Laé M, Janssen KP, Robine S, Artavanis-Tsakonas S and Louvard D: Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci USA. 106:pp. 6309–6314. 2009; View Article : Google Scholar : PubMed/NCBI | |
Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S, Fitch-Bruhns M, Lazetic S, Park IK, Sato A, et al: DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 5:168–177. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Fan F, Wang A, Zheng S and Lu Y: Dll4-Notch signaling in regulation of tumor angiogenesis. J Cancer Res Clin Oncol. 140:525–536. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K and Plowman GD: Chronic DLL4 blockade induces vascular neoplasms. Nature. 463:E6–E7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fischer M, Yen WC, Kapoun AM, Wang M, O'Young G, Lewicki J, Gurney A and Hoey T: Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res. 71:1520–1525. 2011. View Article : Google Scholar : PubMed/NCBI | |
He P, Liang J, Shao T, Guo Y, Hou Y and Li Y: HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression. Int J Clin Exp Med. 8:6510–6516. 2015.PubMed/NCBI | |
van Es JH, Sato T, van de Wetering M, Lyubimova A, Gregorieff A, Zeinstra L, van den Born M, Korving J, Martens ACM, van den Oudenaarden A and Clevers H: Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 14:1099–1104. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fre S, Huyghe M, Mourikis P, Robine S, Louvard D and Artavanis-Tsakonas S: Notch signals control the fate of immature progenitor cells in the intestine. Nature. 435:964–968. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grochowski CM, Loomes KM and Spinner NB: Jagged1 (JAG1): Structure, expression, and disease associations. Gene. 576:381–384. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bray SJ: Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol. 7:678–689. 2006. View Article : Google Scholar : PubMed/NCBI | |
van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F and Clevers H: Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 435:959–963. 2005. View Article : Google Scholar : PubMed/NCBI | |
Guilmeau S, Flandez M, Mariadason JM and Augenlicht LH: Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: Implications for targeting Notch signaling. Oncogene. 29:992–1002. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, Tozzi F, Sceusi E, Zhou Y, Tachibana I, et al: Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 23:171–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Wang G, Song Y, Tang Q, You Q, Liu Z, Chen Y, Zhang Q, Li J, Muhammand S and Wang X: Colorectal cancer stem cell and chemoresistant colorectal cancer cell phenotypes and increased sensitivity to Notch pathway inhibitor. Mol Med Rep. 12:2417–2424. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB and Schwartz GK: Gamma-secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 69:573–582. 2009. View Article : Google Scholar : PubMed/NCBI | |
Akao Y, Noguchi S, Iio A, Kojima K, Takagi T and Naoe T: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett. 300:197–204. 2011. View Article : Google Scholar : PubMed/NCBI | |
Horio Y, Hayashi T, Kuno A and Kunimoto R: Cellular and molecular effects of sirtuins in health and disease. Clin Sci (Lond). 121:191–203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zu G, Ji A, Zhou T and Che N: Clinicopathological significance of SIRT1 expression in colorectal cancer: A systematic review and meta analysis. Int J Surg. 26:32–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yamakuchi M, Ferlito M and Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 105:pp. 13421–13426. 2008; View Article : Google Scholar : PubMed/NCBI | |
Stiegelbauer V, Perakis S, Deutsch A, Ling H, Gerger A and Pichler M: MicroRNAs as novel predictive biomarkers and therapeutic targets in colorectal cancer. World J Gastroenterol. 20:11727–11735. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Sun K, Jiao S, Cai N, Zhao X, Zou H, Xie Y, Wang Z, Zhong M and Wei L: High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep. 4:74812014. View Article : Google Scholar : PubMed/NCBI | |
Gentric G, Mieulet V and Mechta-Grigoriou F: Heterogeneity in cancer metabolism: New concepts in an old field. Antioxid Redox Signal. 26:462–485. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stubbs M and Griffiths JR: The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Adv Enzyme Regul. 50:44–55. 2010. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Lee DH, Kim JL, Kim BR, Na YJ, Jo MJ, Jeong YA, Lee SY, Lee SI, Lee YY and Oh SC: Metformin enhances TRAIL-induced apoptosis by Mcl-1 degradation via Mule in colorectal cancer cells. Oncotarget. 7:59503–59518. 2016. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, Martin-Castillo B, López-Bonet E, Alarcón T and Vazquez-Martin A: The Warburg effect version 2.0: Metabolic reprogramming of cancer stem cells. Cell Cycle. 12:1166–1179. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, et al: Targeting cancer cell metabolism: The combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 70:2465–2475. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ben Sahra I, Le Marchand-Brustel Y, Tanti JF and Bost F: Metformin in cancer therapy: A new perspective for an old antidiabetic drug? Mol Cancer Ther. 9:1092–1099. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miranda VC, Braghiroli MI, Faria LD, Bariani G, Alex A, Bezerra Neto JE, Capareli FC, Sabbaga J, Lobo Dos Santos JF, Hoff PM and Riechelmann RP: Phase 2 trial of metformin combined with 5-fluorouracil in patients with refractory metastatic colorectal cancer. Clin Colorectal Cancer. 15:321–328.e1. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang HH and Guo XL: Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 78:13–26. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hosono K, Endo H, Takahashi H, Sugiyama M, Sakai E, Uchiyama T, Suzuki K, Iida H, Sakamoto Y, Yoneda K, et al: Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res (Phila). 3:1077–1083. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Guan M, Zheng Z, Zhang Q, Gao F and Xue Y: Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PLoS One. 8:e812642013. View Article : Google Scholar : PubMed/NCBI | |
Montales MT, Simmen RC, Ferreira ES, Neves VA and Simmen FA: Metformin and soybean-derived bioactive molecules attenuate the expansion of stem cell-like epithelial subpopulation and confer apoptotic sensitivity in human colon cancer cells. Genes Nutr. 10:492015. View Article : Google Scholar : PubMed/NCBI | |
Zhou XZ, Xue YM, Zhu B and Sha JP: Effects of metformin on proliferation of human colon carcinoma cell line SW-480. Nan Fang Yi Ke Da Xue Xue Bao. 30:1935–1938. 1942.2010 (In Chinese). | |
Nie Z, Zhu H and Gu M: Reduced colorectal cancer incidence in type 2 diabetic patients treated with metformin: A meta-analysis. Pharm Biol. 54:2636–2642. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sehdev A, Shih YC, Vekhter B, Bissonnette MB, Olopade OI and Polite BN: Metformin for primary colorectal cancer prevention in patients with diabetes: A case-control study in a US population. Cancer. 121:1071–1078. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cho YH, Ko BM, Kim SH, Myung YS, Choi JH, Han JP, Hong SJ, Jeon SR, Kim HG, Kim JO and Lee MS: Does metformin affect the incidence of colonic polyps and adenomas in patients with type 2 diabetes mellitus? Intest Res. 12:139–145. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lonardo E, Cioffi M, Sancho P, Crusz S and Heeschen C: Studying pancreatic cancer stem cell characteristics for developing new treatment strategies. J Vis Exp. e528012015.PubMed/NCBI | |
Iliopoulos D, Hirsch HA and Struhl K: Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 71:3196–3201. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hirsch HA, Iliopoulos D and Struhl K: Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA. 110:pp. 972–977. 2013; View Article : Google Scholar : PubMed/NCBI | |
Hirsch HA, Iliopoulos D, Tsichlis PN and Struhl K: Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69:7507–7511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Del Barco S, Martin-Castillo B and Menendez JA: Metformin regulates breast cancer stem cell ontogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status. Cell Cycle. 9:3807–3814. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Xu Y, Yang J, Fang Y, Lou H, Han W, Zhang M, Chen W, Wang K, Li D, et al: Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fluorouracil through AMPK activation. PLoS One. 9:e977812014. View Article : Google Scholar : PubMed/NCBI | |
Burn J and Sheth H: The role of aspirin in preventing colorectal cancer. Br Med Bull. 119:17–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nan H, Hutter CM, Lin Y, Jacobs EJ, Ulrich CM, White E, Baron JA, Berndt SI, Brenner H, Butterbach K, et al: Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA. 313:1133–1142. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sabatino L, Pancione M, Votino C, Colangelo T, Lupo A, Novellino E, Lavecchia A and Colantuoni V: Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J Gastroenterol. 20:7137–7151. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dihlmann S, Siermann A and von Knebel Doeberitz M: The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene. 20:645–653. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hawcroft G, D'Amico M, Albanese C, Markham AF, Pestell RG and Hull MA: Indomethacin induces differential expression of beta-catenin, gamma-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis. 23:107–114. 2002. View Article : Google Scholar : PubMed/NCBI | |
Alberts SR, Sargent DJ, Nair S, Mahoney MR, Mooney M, Thibodeau SN, Smyrk TC, Sinicrope FA, Chan E, Gill S, et al: Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: A randomized trial. JAMA. 307:1383–1393. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cao R, Zhang S, Ma D and Hu L: A multi-center randomized phase II clinical study of bevacizumab plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) compared with FOLFIRI alone as second-line treatment for Chinese patients with metastatic colorectal cancer. Med Oncol. 32:3252015. View Article : Google Scholar : PubMed/NCBI | |
Longley DB, Harkin DP and Johnston PG: 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Takahari D, Matsumoto H, Baba H, Nakamura M, Yoshida K, Yoshida M, Iwamoto S, Shimada K, Komatsu Y, et al: Leucovorin, fluorouracil, and oxaliplatin plus bevacizumab versus S-1 and oxaliplatin plus bevacizumab in patients with metastatic colorectal cancer (SOFT): An open-label, non-inferiority, randomised phase 3 trial. Lancet Oncol. 14:1278–1286. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schmoll HJ, Tabernero J, Maroun J, de Braud F, Price T, Van Cutsem E, Hill M, Hoersch S, Rittweger K and Haller DG: Capecitabine plus oxaliplatin compared with fluorouracil/folinic acid as adjuvant therapy for stage iii colon cancer: Final results of the NO16968 randomized controlled phase III trial. J Clin Oncol. 33:3733–3740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Élez E, Kocáková I, Höhler T, Martens UM, Bokemeyer C, Van Cutsem E, Melichar B, Smakal M, Csőszi T, Topuzov E, et al: Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: The randomised phase I/II POSEIDON trial. Ann Oncol. 26:132–140. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sclafani F, Kim TY, Cunningham D, Kim TW, Tabernero J, Schmoll HJ, Roh JK, Kim SY, Park YS, Guren TK, et al: A randomized phase II/III study of dalotuzumab in combination with cetuximab and irinotecan in chemorefractory, KRAS wild-type, metastatic colorectal cancer. J Natl Cancer Inst. 107:djv2582015. View Article : Google Scholar : PubMed/NCBI | |
Fujita K, Kubota Y, Ishida H and Sasaki Y: Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol. 21:12234–12248. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Gramont A, Van Cutsem E, Schmoll HJ, Tabernero J, Clarke S, Moore MJ, Cunningham D, Cartwright TH, Hecht JR, Rivera F, et al: Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): A phase 3 randomised controlled trial. Lancet Oncol. 13:1225–1233. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bayoglu IV, Yildiz I, Varol U, Cokmert S, Alacacıoğlu A, Kucukzeybek Y, Akyol M, Demir L, Dirican A and Tarhan O: Uracil/tegafur as a possible salvage therapy in chemo-refractory colorectal cancer patients: A single institutional retrospective study. Contemp Oncol (Pozn). 19:385–390. 2015.PubMed/NCBI | |
Feng QY, Wei Y, Chen JW, Chang WJ, Ye LC, Zhu DX and Xu JM: Anti-EGFR and anti-VEGF agents: Important targeted therapies of colorectal liver metastases. World J Gastroenterol. 20:4263–4275. 2014. View Article : Google Scholar : PubMed/NCBI | |
Strickler JH and Hurwitz HI: Bevacizumab-based therapies in the first-line treatment of metastatic colorectal cancer. Oncologist. 17:513–524. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roviello G, Bachelot T, Hudis CA, Curigliano G, Reynolds AR, Petrioli R and Generali D: The role of bevacizumab in solid tumours: A literature based meta-analysis of randomised trials. Eur J Cancer. 75:245–258. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Nair SG, Mahoney MR, Nelson GD, Shields AF, Chan E, Goldberg RM, Gill S, Kahlenberg MS, Quesenberry JT, et al: Comparison of FOLFIRI with or without cetuximab in patients with resected stage III colon cancer; NCCTG (Alliance) intergroup trial N0147. Clin Colorectal Cancer. 13:100–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Terazawa T, Nishitani H, Kato K, Hashimoto H, Akiyoshi K, Ito Y, Nakamoto A, Iwasa S, Nakajima TE, Hamaguchi T, et al: Phase II study of cetuximab with irinotecan for KRAS wild-type colorectal cancer in Japanese patients. Asia Pac J Clin Oncol. 13:e132–e137. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tay RY, Wong R and Hawkes EA: Treatment of metastatic colorectal cancer: Focus on panitumumab. Cancer Manag Res. 7:189–198. 2015.PubMed/NCBI | |
Bahrami A, Hassanian SM, ShahidSales S, Farjami Z, Hasanzadeh M, Anvari K, Aledavood A, Maftouh M, Ferns GA, Khazaei M and Avan A: Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol. Mar 6–2017.(Epub ahead of print). View Article : Google Scholar | |
Françoso A and Simioni PU: Immunotherapy for the treatment of colorectal tumors: Focus on approved and in-clinical-trial monoclonal antibodies. Drug Des Devel Ther. 11:177–184. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ursem C, Van Loon K and Venook A: Adjuvant therapy trials. Cancer J. 22:196–198. 2016. View Article : Google Scholar : PubMed/NCBI | |
Botchkina G: Colon cancer stem cells-from basic to clinical application. Cancer Lett. 338:127–140. 2013. View Article : Google Scholar : PubMed/NCBI | |
Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H and Mori M: CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol. 15:2927–2933. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW and Gilbertson RJ: Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 457:603–607. 2009. View Article : Google Scholar : PubMed/NCBI | |
Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS Jr, Crawford H, Dufour A, Ju J, Wang Y, Leyfman Y and Botchkina GI: Phenotypic subpopulations of metastatic colon cancer stem cells: Genomic analysis. Cancer Genomics Proteomics. 6:19–29. 2009.PubMed/NCBI | |
Zhou F, Mu YD, Liang J, Liu ZX, Zhou D, Ning WL, Li YZ, Ding D and Zhang JF: Aldehyde dehydrogenase 1: A specific cancer stem cell marker for human colorectal carcinoma. Mol Med Rep. 11:3894–3899. 2015. View Article : Google Scholar : PubMed/NCBI |