1
|
Di Bernardo MC, Crowther-Swanepoel D,
Broderick P, Webb E, Sellick G, Wild R, Sullivan K, Vijayakrishnan
J, Wang Y, Pittman AM, et al: A genome-wide association study
identifies six susceptibility loci for chronic lymphocytic
leukemia. Nat Genet. 40:1204–1210. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reddy KS: Chronic lymphocytic leukaemia
profiled for prognosis using a fluorescence in situ hybridisation
panel. Br J Haematol. 132:705–722. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Byrd JC, Stilgenbauer S and Flinn IW:
Chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ
Program. 1–183. 2004.PubMed/NCBI
|
4
|
Cramer P and Hallek M: Prognostic factors
in chronic lymphocytic leukemia-what do we need to know? Nat Rev
Clin Oncol. 8:38–47. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Binet JL, Auquier A, Dighiero G, Chastang
C, Piguet H, Goasguen J, Vaugier G, Potron G, Colona P, Oberling F,
et al: A new prognostic classification of chronic lymphocytic
leukemia derived from a multivariate survival analysis. Cancer.
48:198–206. 1981. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rai KR, Sawitsky A, Cronkite EP, Chanana
AD, Levy RN and Pasternack BS: Clinical staging of chronic
lymphocytic leukemia. Blood. 1975;46(2):219-234. Blood.
128:21092016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kay NE, O'Brien SM, Pettitt AR and
Stilgenbauer S: The role of prognostic factors in assessing
‘high-risk’ subgroups of patients with chronic lymphocytic
leukemia. Leukemia. 21:1885–1891. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rassenti LZ, Huynh L, Toy TL, Chen L,
Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC, et
al: ZAP-70 compared with immunoglobulin heavy-chain gene mutation
status as a predictor of disease progression in chronic lymphocytic
leukemia. N Engl J Med. 351:893–901. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Damle RN, Wasil T, Fais F, Ghiotto F,
Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J,
et al: Ig V gene mutation status and CD38 expression as novel
prognostic indicators in chronic lymphocytic leukemia. Blood.
94:1840–1847. 1999.PubMed/NCBI
|
10
|
Hamblin TJ, Davis Z, Gardiner A, Oscier DG
and Stevenson FK: Unmutated Ig V(H) genes are associated with a
more aggressive form of chronic lymphocytic leukemia. Blood.
94:1848–1854. 1999.PubMed/NCBI
|
11
|
Calin GA, Ferracin M, Cimmino A, Di Leva
G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, et
al: A MicroRNA signature associated with prognosis and progression
in chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Theodorou M, Speletas M, Mamara A,
Papachristopoulou G, Lazou V, Scorilas A and Katsantoni E:
Identification of a STAT5 target gene, Dpf3, provides novel
insights in chronic lymphocytic leukemia. PLoS One. 8:e761552013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Lim LP, Lau NC, Garrett-Engele P, Grimson
A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM:
Microarray analysis shows that some microRNAs downregulate large
numbers of target mRNAs. Nature. 433:769–773. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Calin GA, Sevignani C, Dumitru CD, Hyslop
T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M
and Croce CM: Human microRNA genes are frequently located at
fragile sites and genomic regions involved in cancers. Proc Natl
Acad Sci USA. 101:pp. 2999–3004. 2004; View Article : Google Scholar : PubMed/NCBI
|
15
|
Michael MZ, O' Connor SM, van Holst
Pellekaan NG, Young GP and James RJ: Reduced accumulation of
specific microRNAs in colorectal neoplasia. Mol Cancer Res.
1:882–891. 2003.PubMed/NCBI
|
16
|
Takamizawa J, Konishi H, Yanagisawa K,
Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y,
et al: Reduced expression of the let-7 microRNAs in human lung
cancers in association with shortened postoperative survival.
Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fernando TR, Rodriguez-Malave NI and Rao
DS: MicroRNAs in B cell development and malignancy. J Hematol
Oncol. 5:72012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Marton S, Garcia MR, Robello C, Persson H,
Trajtenberg F, Pritsch O, Rovira C, Naya H, Dighiero G and Cayota
A: Small RNAs analysis in CLL reveals a deregulation of miRNA
expression and novel miRNA candidates of putative relevance in CLL
pathogenesis. Leukemia. 22:330–338. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ferracin M, Zagatti B, Rizzotto L,
Cavazzini F, Veronese A, Ciccone M, Saccenti E, Lupini L, Grilli A,
De Angeli C, et al: MicroRNAs involvement in fludarabine refractory
chronic lymphocytic leukemia. Mol Cancer. 9:1232010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Negrini M, Cutrona G, Bassi C, Fabris S,
Zagatti B, Colombo M, Ferracin M, D'Abundo L, Saccenti E, Matis S,
et al: microRNAome expression in chronic lymphocytic leukemia:
Comparison with normal B-cell subsets and correlations with
prognostic and clinical parameters. Clin Cancer Res. 20:41412014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ruiz-Lafuente N, Alcaraz-García MJ,
Sebastián-Ruiz S, García-Serna AM, Gómez-Espuch J, Moraleda JM,
Minguela A, García-Alonso AM and Parrado A: IL-4 up-regulates
MiR-21 and the MiRNAs hosted in the CLCN5 gene in chronic
lymphocytic leukemia. PLoS One. 10:e01249362015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gutierrez A Jr, Tschumper RC, Wu X,
Shanafelt TD, Eckel-Passow J, Huddleston PM III, Slager SL, Kay NE
and Jelinek DF: LEF-1 is a prosurvival factor in chronic
lymphocytic leukemia and is expressed in the preleukemic state of
monoclonal B-cell lymphocytosis. Blood. 116:2975–2983. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Gautier L, Cope L, Bolstad BM and Irizarry
RA: affy-analysis of Affymetrix GeneChip data at the probe level.
Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Diboun I, Wernisch L, Orengo CA and
Koltzenburg M: Microarray analysis after RNA amplification can
detect pronounced differences in gene expression using limma. BMC
Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dennis G Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation,
visualization, and integrated discovery. Genome Biol. 4:P32003.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ma N and Gao X: β-actin is predicted as
one of the potential targets of miR-145: Choose internal control
gene in verification of microRNA target. Carcinogenesis.
34:2362013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang X: miRDB: A microRNA target
prediction and functional annotation database with a wiki
interface. RNA. 14:1012–1017. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dweep H, Sticht C, Pandey P and Gretz N:
miRWalk-database: Prediction of possible miRNA binding sites by
‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847.
2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rigoutsos I, Miranda K and Huynh T: rna22:
A unified computational framework for discovering miRNA precursors,
localizing mature miRNAs, identifying 3′ UTR target-islands and
determining the targets of mature-miRNAs. IBM Corporation; Yorktown
Heights, NY: 2007
|
30
|
Edris B: A comparison of the Oligomap and
TargetScan algorithms for miRNA target analysis. PhD
dissertationStanford University Publication no. Bmi231. Stanford,
CA: 2011
|
31
|
Pfeil AM, Imfeld P, Pettengell R, Jick SS,
Szucs TD, Meier CR and Schwenkglenks M: Trends in incidence and
medical resource utilisation in patients with chronic lymphocytic
leukaemia: Insights from the UK Clinical Practice Research Datalink
(CPRD). Ann Hematol. 94:421–429. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fabbri G and Dalla-Favera R: The molecular
pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer.
16:145–162. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fais F, Ghiotto F, Hashimoto S, Sellars B,
Valetto A, Allen SL, Schulman P, Vinciguerra VP, Rai K, Rassenti
LZ, et al: Chronic lymphocytic leukemia B cells express restricted
sets of mutated and unmutated antigen receptors. J Clin Invest.
102:1515–1525. 1998. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Besa EC: Use of intravenous immunoglobulin
in chronic lymphocytic leukemia. Am J Med. 76:209–218. 1984.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhong Y, El-Gamal D, Dubovsky JA, Beckwith
KA, Harrington BK, Williams KE, Goettl VM, Jha S, Mo X, Jones JA,
et al: Selinexor suppresses downstream effectors of B-cell
activation, proliferation and migration in chronic lymphocytic
leukemia cells. Leukemia. 28:1158–1163. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tötterman TH, Carlsson M, Funderud S,
Simonsson B, Oberg G and Nilsson K: Chronic B-lymphocytic
leukemia-expression of B cell activation markers in relation to
activity of the disease. Nouv Rev Fr Hematol. 30:279–281.
1988.PubMed/NCBI
|
37
|
Doucet A, Butler GS, Rodríguez D, Prudova
A and Overall CM: Metadegradomics: Toward in vivo quantitative
degradomics of proteolytic post-translational modifications of the
cancer proteome. Mol Cell Proteomics. 7:1925–1951. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rogers LD and Overall CM: Proteolytic
post-translational modification of proteins: Proteomic tools and
methodology. Mol Cell Proteomics. 12:3532–3542. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Taylor KH, Briley A, Wang Z, Cheng J, Shi
H and Caldwell CW: Aberrant epigenetic gene regulation in lymphoid
malignancies. Semin Hematol. 50:38–47. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gao L, Liu M, Dong N, Jiang Y, Lin CY,
Huang M, Wu D and Wu Q: Matriptase is highly upregulated in chronic
lymphocytic leukemia and promotes cancer cell invasion. Leukemia.
27:1191–1194. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Adamopoulos PG, Kontos CK, Papageorgiou
SG, Pappa V and Scorilas A: KLKB1 mRNA overexpression: A novel
molecular biomarker for the diagnosis of chronic lymphocytic
leukemia. Clin Biochem. 48:849–854. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Artavanis-Tsakonas S, Rand MD and Lake RJ:
Notch signaling: Cell fate control and signal integration in
development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI
|
43
|
Pear WS, Aster JC, Scott ML, Hasserjian
RP, Soffer B, Sklar J and Baltimore D: Exclusive development of T
cell neoplasms in mice transplanted with bone marrow expressing
activated Notch alleles. J Exp Med. 183:2283–2291. 1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hubmann R, Schwarzmeier JD, Shehata M,
Hilgarth M, Duechler M, Dettke M and Berger R: Notch2 is involved
in overexperssion of CD23 in B-cell chronic lymphocytic leukemia.
Blood. 99:3742–3747. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lopez-Matas M, Rodriguez-Justo M, Morilla
R, Catovsky D and Matutes E: Quantitative expression of CD23 and
its ligand CD21 in chronic lymphocytic leukemia. Haematologica.
85:1140–1145. 2000.PubMed/NCBI
|
46
|
Bogani D, Morgan MA, Nelson AC, Costello
I, McGouran JF, Kessler BM, Robertson EJ and Bikoff EK: The PR/SET
domain zinc finger protein Prdm4 regulates gene expression in
embryonic stem cells but plays a nonessential role in the
developing mouse embryo. Mol Cell Biol. 33:3936–3950. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Chittka A, Nitarska J, Grazini U and
Richardson WD: Transcription factor positive regulatory domain 4
(PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to
mediate histone arginine methylation and control neural stem cell
proliferation and differentiation. J Biol Chem. 287:42995–43006.
2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yang XH and Huang S: PFM1 (PRDM4), a new
member of the PR-domain family, maps to a tumor suppressor locus on
human chromosome 12q23-q24.1. Genomics. 61:319–325. 1999.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Choi MC, Jong HS, Kim TY, Song SH, Lee DS,
Lee JW, Kim TY, Kim NK and Bang YJ: AKAP12/Gravin is inactivated by
epigenetic mechanism in human gastric carcinoma and shows growth
suppressor activity. Oncogene. 23:7095–7103. 2004. View Article : Google Scholar : PubMed/NCBI
|
50
|
Akakura S and Gelman IH: Pivotal role of
AKAP12 in the regulation of cellular adhesion dynamics: Control of
cytoskeletal architecture, cell migration and mitogenic signaling.
J Signal Transduct. 2012:5291792012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Xia W, Unger P, Miller L, Nelson J and
Gelman IH: The Src-suppressed C kinase substrate, SSeCKS, is a
potential metastasis inhibitor in prostate cancer. Cancer Res.
61:5644–5651. 2001.PubMed/NCBI
|
52
|
van't Veer MB, Brooijmans AM, Langerak AW,
Verhaaf B, Goudswaard CS, Graveland WJ, van Lom K and Valk PJ: The
predictive value of lipoprotein lipase for survival in chronic
lymphocytic leukemia. Haematologica. 91:56–63. 2006.PubMed/NCBI
|