1
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Meoni G, Cecere FL, Lucherini E and Di
Costanzo F: Medical treatment of advanced non-small cell lung
cancer in elderly patients: A review of the role of chemotherapy
and targeted agents. J Geriatr Oncol. 4:282–290. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Puglisi M, Thavasu P, Stewart A, de Bono
JS, O'Brien ME, Popat S, Bhosle J and Banerji U: AKT inhibition
synergistically enhances growth-inhibitory effects of gefitinib and
increases apoptosis in non-small cell lung cancer cell lines. Lung
Cancer. 85:141–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jung SK, Lee MH, Lim DY, Lee SY, Jeong CH,
Kim JE, Lim TG, Chen H, Bode AM, Lee HJ, et al: Butein, a novel
dual inhibitor of MET and EGFR, overcomes gefitinib-resistant lung
cancer growth. Mol Carcinog. 54:322–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ge X, Chen Q, Wu YP, Zhang Y, Xia H, Yuan
D, Chen Q, Leng W, Chen L, Tang Q, et al: Induced IGF-1R activation
contributes to gefitinib resistance following combined treatment
with paclitaxel, cisplatin and gefitinib in A549 lung cancer cells.
Oncol Rep. 32:1401–1408. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Clarke JD, Dashwood RH and Ho E:
Multi-targeted prevention of cancer by sulforaphane. Cancer Lett.
269:291–304. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Priya DK, Gayathri R, Gunassekaran G,
Murugan S and Sakthisekaran D: Chemopreventive role of sulforaphane
by upholding the GSH redox cycle in pre- and post-initiation phases
of experimental lung carcinogenesis. Asian Pac J Cancer Prev.
12:103–110. 2011.PubMed/NCBI
|
8
|
Varjosalo M and Taipale J: Hedgehog:
Functions and mechanisms. Genes Dev. 22:2454–2472. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shi S, Deng YZ, Zhao JS, Ji XD, Shi J,
Feng YX, Li G, Li JJ, Zhu D, Koeffler HP, et al: RACK1 promotes
non-small-cell lung cancer tumorigenicity through activating sonic
hedgehog signaling pathway. J Biol Chem. 287:7845–7858. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Raz G, Allen KE, Kingsley C, Cherni I,
Arora S, Watanabe A, Lorenzo CD, Edwards VD, Sridhar S, Hostetter G
and Weiss GJ: Hedgehog signaling pathway molecules and ALDH1A1
expression in early-stage non-small cell lung cancer. Lung Cancer.
76:191–196. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vestergaard J, Pedersen MW, Pedersen N,
Ensinger C, Tümer Z, Tommerup N, Poulsen HS and Larsen LA: Hedgehog
signaling in small-cell lung cancer: Frequent in vivo but a rare
event in vitro. Lung Cancer. 52:281–290. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Maitah MY, Ali S, Ahmad A, Gadgeel S and
Sarkar FH: Up-regulation of sonic hedgehog contributes to
TGF-beta1-induced epithelial to mesenchymal transition in NSCLC
cells. PLoS One. 6:e160682011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Allegra A, Alonci A, Penna G, Innao V,
Gerace D, Rotondo F and Musolino C: The cancer stem cell
hypothesis: A guide to potential molecular targets. Cancer Invest.
32:470–495. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tanaka H, Nakamura M, Kameda C, Kubo M,
Sato N, Kuroki S, Tanaka M and Katano M: The Hedgehog signaling
pathway plays an essential role in maintaining the CD44+CD24-/low
subpopulation and the side population of breast cancer cells.
Anticancer Res. 29:2147–2157. 2009.PubMed/NCBI
|
15
|
Liu M, Inoue K, Leng T, Guo S and Xiong
ZG: TRPM7 channels regulate glioma stem cell through STAT3 and
Notch signaling pathways. Cell Signal. 26:2773–2781. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Arasada RR, Amann JM, Rahman MA, Huppert
SS and Carbone DP: EGFR blockade enriches for lung cancer stem-like
cells through Notch3-dependent signaling. Cancer Res. 74:5572–5584.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rodova M, Fu J, Watkins DN, Srivastava RK
and Shankar S: Sonic hedgehog signaling inhibition provides
opportunities for targeted therapy by sulforaphane in regulating
pancreatic cancer stem cell self-renewal. PLoS One. 7:e460832012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Eramo A, Lotti F, Sette G, Pilozzi E,
Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De
Maria R: Identification and expansion of the tumorigenic lung
cancer stem cell population. Cell Death Differ. 15:504–514. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Okudela K, Woo T, Mitsui H, Tajiri M,
Masuda M and Ohashi K: Expression of the potential cancer stem cell
markers, CD133, CD44, ALDH1, and β-catenin, in primary lung
adenocarcinoma-their prognostic significance. Pathol Int.
62:792–801. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kitamura H, Okudela K, Yazawa T, Sato H
and Shimoyamada H: Cancer stem cell: Implications in cancer biology
and therapy with special reference to lung cancer. Lung Cancer.
66:275–281. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mizugaki H, Sakakibara-Konishi J, Kikuchi
J, Moriya J, Hatanaka KC, Kikuchi E, Kinoshita I, Oizumi S,
Dosaka-Akita H, Matsuno Y and Nishimura M: CD133 expression: A
potential prognostic marker for non-small cell lung cancers. Int J
Clin Oncol. 19:254–259. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shimada M, Sugimoto K, Iwahashi S,
Utsunomiya T, Morine Y, Imura S and Ikemoto T: CD133 expression is
a potential prognostic indicator in intrahepatic
cholangiocarcinoma. J Gastroenterol. 45:896–902. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Heo JS, Lee MY and Han HJ: Sonic hedgehog
stimulates mouse embryonic stem cell proliferation by cooperation
of Ca2+/protein kinase C and epidermal growth factor receptor as
well as Gli1 activation. Stem Cells. 25:3069–3080. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kasper M, Schnidar H, Neill GW, Hanneder
M, Klingler S, Blaas L, Schmid C, Hauser-Kronberger C, Regl G,
Philpott MP and Aberger F: Selective modulation of Hedgehog/GLI
target gene expression by epidermal growth factor signaling in
human keratinocytes. Mol Cell Biol. 26:6283–6298. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mimeault M and Batra SK: Frequent
deregulations in the hedgehog signaling network and cross-talks
with the epidermal growth factor receptor pathway involved in
cancer progression and targeted therapies. Pharmacol Rev.
62:497–524. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kalpana Deepa, Priya D, Gayathri R and
Sakthisekaran D: Role of sulforaphane in the anti-initiating
mechanism of lung carcinogenesis in vivo by modulating the
metabolic activation and detoxification of benzo(a)pyrene. Biomed
Pharmacother. 65:9–16. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
MacDonagh L, Gray SG, Breen E, Cuffe S,
Finn SP, O'Byrne KJ and Barr MP: Lung cancer stem cells: The root
of resistance. Cancer Lett. 372:147–156. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kinugasa Y, Matsui T and Takakura N: CD44
expressed on cancer-associated fibroblasts is a functional molecule
supporting the stemness and drug resistance of malignant cancer
cells in the tumor microenvironment. Stem Cells. 32:145–156. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee CG, McCarthy S, Gruidl M, Timme C and
Yeatman TJ: MicroRNA-147 induces a mesenchymal-to-epithelial
transition (MET) and reverses EGFR inhibitor resistance. PLoS One.
9:e845972014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yao J, An Y, Wie JS, Ji ZL, Lu ZP, Wu JL,
Jiang KR, Chen P, Xu ZK and Miao Y: Cyclopamine reverts acquired
chemoresistance and down-regulates cancer stem cell markers in
pancreatic cancer cell lines. Swiss Med Wkly.
141:w132082011.PubMed/NCBI
|
31
|
Dean M, Fojo T and Bates S: Tumour stem
cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Sarvi S, Mackinnon AC, Avlonitis N,
Bradley M, Rintoul RC, Rassl DM, Wang W, Forbes SJ, Gregory CD and
Sethi T: CD133+ cancer stem-like cells in small cell lung cancer
are highly tumorigenic and chemoresistant but sensitive to a novel
neuropeptide antagonist. Cancer Res. 74:1554–1565. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang J, Chen J, He J, Li J, Shi J, Cho WC
and Liu X: Wnt signaling as potential therapeutic target in lung
cancer. Expert Opin Ther Targets. 20:999–1015. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kubo T, Takigawa N, Osawa M, Harada D,
Ninomiya T, Ochi N, Ichihara E, Yamane H, Tanimoto M and Kiura K:
Subpopulation of small-cell lung cancer cells expressing CD133 and
CD87 show resistance to chemotherapy. Cancer Sci. 104:78–84. 2013.
View Article : Google Scholar : PubMed/NCBI
|