1
|
Matsumoto T, Jimi S, Hara S, Takamatsu Y,
Suzumiya J and Tamura K: Importance of inducible multidrug
resistance 1 expression in HL-60 cells resistant to gemtuzumab
ozogamicin. Leuk Lymphoma. 53:1399–1405. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang QH, Dou HT, Xu P, Zhuang SC and Liu
PS: Tumor recurrence and drug resistance properties of side
population cells in high grade ovary cancer. Drug Res. 65:153–157.
2015.
|
3
|
Gao F, Dong W, Yang W, Liu J, Zheng Z and
Sun K: Expression of P-gp in acute myeloid leukemia and the
reversal function of As2O3 on drug resistance. Oncol Lett.
9:177–182. 2015.PubMed/NCBI
|
4
|
Chen J, Wei H, Xie B, Wang B and Cheng J
and Cheng J: Endoplasmic reticulum stress contributes to arsenic
trioxide-induced apoptosis in drug-sensitive and -resistant
leukemia cells. Leuk Res. 36:1526–1535. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
de Figueiredo-Pontes LL, Pintão MC,
Oliveira LC, Dalmazzo LF, Jácomo RH, Garcia AB, Falcão RP and Rego
EM: Determination of P-glycoprotein, MDR-related protein 1, breast
cancer resistance protein, and lung-resistance protein expression
in leukemic stem cells of acute myeloid leukemia. Cytometry B Clin
Cytom. 74:163–168. 2008.PubMed/NCBI
|
6
|
Munić V, Kelnerić Z, Mikac L and Eraković
Haber V: Differences in assessment of macrolide interaction with
human MDR1 (ABCB1, P-gp) using rhodamine-123 efflux, ATPase
activity and cellular accumulation assays. Eur J Pharm Sci.
41:86–95. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakanishi T and Ross DD: Breast cancer
resistance protein (BCRP/ABCG2): Its role in multidrug resistance
and regulation of its gene expression. Chin J Cancer. 31:73–99.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang Y, Laterra J and Pomper MG: Hedgehog
pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP
and ABCB1/Pgp. Neoplasia. 11:96–101. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gutiérrez-González A, Belda-Iniesta C,
Bargiela-Iparraguirre J, Dominguez G, García Alfonso P, Perona R
and Sanchez-Perez I: Targeting Chk2 improves gastric cancer
chemotherapy by impairing DNA damage repair. Apoptosis. 18:347–360.
2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ding Q, Gu R, Liang J, Zhang X and Chen Y:
PI-103 sensitizes acute myeloid leukemia stem cells to
daunorubicin-induced cytotoxicity. Med Oncol. 30:3952013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Saito Y, Kitamura H, Hijikata A,
Tomizawa-Murasawa M, Tanaka S, Takagi S, Uchida N, Suzuki N, Sone
A, Najima Y, et al: Identification of therapeutic targets for
quiescent, chemotherapy-resistant human leukemia stem cells. Sci
Transl Med. 2:17ra92010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Moore N and Lyle S: Quiescent,
slow-cycling stem cell populations in cancer: A review of the
evidence and discussion of significance. J Oncol.
2011:pii:3960762011. View Article : Google Scholar
|
13
|
Pollyea DA, Gutman JA, Gore L, Smith CA
and Jordan CT: Targeting acute myeloid leukemia stem cells: A
review and principles for the development of clinical trials.
Haematologica. 99:1277–1284. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou J and Chng WJ: Identification and
targeting leukemia stem cells: The path to the cure for acute
myeloid leukemia. World J Stem Cells. 6:473–484. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Crews LA and Jamieson CH: Selective
elimination of leukemia stem cells: Hitting a moving target. Cancer
Lett. 338:15–22. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Marques DS, Sandrini JZ, Boyle RT, Marins
LF and Trindade GS: Relationships between multidrug resistance
(MDR) and stem cell markers in human chronic myeloid leukemia cell
lines. Leukemia Res. 34:757–762. 2010. View Article : Google Scholar
|
17
|
Buda G, Orciuolo E, Maggini V, Galimberti
S, Barale R, Ross AM and Petrini M: MDR1 modulates apoptosis in
CD34+ leukemic cells. Ann Hematol. 87:1017–1018. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao D, Jiang Y, Dong X, Liu Z, Qu B,
Zhang Y, Ma N and Han Q: Arsenic trioxide reduces drug resistance
to adriamycin in leukemic K562/A02 cells via multiple mechanisms.
Biomed Pharmacother. 65:354–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Perkins C, Kim CN, Fang G and Bhalla KN:
Arsenic induces apoptosis of multidrug-resistant human myeloid
leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2,
or Bcl-x(L). Blood. 95:1014–1022. 2000.PubMed/NCBI
|
20
|
Zhao H, Guo W, Peng C, Ji T and Lu X:
Arsenic trioxide inhibits the growth of adriamycin resistant
osteosarcoma cells through inducing apoptosis. Mol Biol Rep.
37:2509–2515. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Beauchamp EM, Ringer L, Bulut G, Sajwan
KP, Hall MD, Lee YC, Peaceman D, Ozdemirli M, Rodriguez O,
Macdonald TJ, et al: Arsenic trioxide inhibits human cancer cell
growth and tumor development in mice by blocking Hedgehog/GLI
pathway. J Clin Invest. 121:148–160. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wei H, Su H, Bai D, Zhao H, Ge J, Wan B,
Yao X and Ma L: Arsenic trioxide inhibits p-glycoprotein expression
in multidrug-resistant human leukemia cells that overexpress MDR1
gene. Chin Med J. 116:1644–1648. 2003.PubMed/NCBI
|
23
|
Fung TK and So CW: Overcoming treatment
resistance in acute promyelocytic leukemia and beyond. Oncotarget.
4:1128–1129. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tomita A, Kiyoi H and Naoe T: Mechanisms
of action and resistance to all-trans retinoic acid (ATRA) and
arsenic trioxide (As2O3) in acute promyelocytic leukemia. J
Hematol. 97:717–725. 2013.
|
25
|
Zhu HH, Qin YZ and Huang XJ: Resistance to
arsenic therapy in acute promyelocytic leukemia. N Engl J Med.
370:1864–1866. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Felipe Rico J, Hassane DC and Guzman ML:
Acute myelogenous leukemia stem cells: From Bench to Bedside.
Cancer Lett. 338:4–9. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang F, Wang XK, Shi CJ, Zhang H, Hu YP,
Chen YF and Fu LW: Nilotinib enhances the efficacy of conventional
chemotherapeutic drugs in CD34+CD38- stem cells and ABC transporter
overexpressing leukemia cells. Molecules. 19:3356–3375. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lo-Coco F, Avvisati G, Vignetti M, Thiede
C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona
E, et al: Retinoic acid and arsenic trioxide for acute
promyelocytic leukemia. N Engl J Med. 369:111–121. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu S, Zhang YF, Carew MW, Hao WH, Loo JF,
Naranmandura H and Le XC: Multidrug resistance protein 1 (ABCC1)
confers resistance to arsenic compounds in human myeloid leukemic
HL-60 cells. Arch Toxicol. 87:1013–1023. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hemmingsson O, Nöjd M, Kao G and Naredi P:
Increased sensitivity to platinating agents and arsenite in human
ovarian cancer by downregulation of ASNA1. Oncol Rep. 22:869–875.
2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Matulis SM, Morales AA, Yehiayan L, Lee
KP, Cai Y and Boise LH: Alterations in glutathione levels and
apoptotic regulators are associated with acquisition of arsenic
trioxide resistance in multiple myeloma. PLoS One. 7:e526622012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yi J, Chen J, Sun J and Wei HL: The
relationship between multi-drug resistance and proportion of
leukemia stem cells and expression of drug transporters in
drug-resistant leukemia K562/ADM cells. Zhonghua Yi Xue Za Zhi.
89:1741–1744. 2009.(In Chinese). PubMed/NCBI
|
33
|
Qiu S, Jia Y, Xing H, Yu T, Yu J, Yu P,
Tang K, Tian Z, Wang H, Mi Y, et al: N-Cadherin and Tie-positive
CD34+CD38−CD123+ leukemic stem cell populations can develop acute
myeloid leukemia more effectively in NOD/SCID mice. Leuk Res.
38:632–637. 2014. View Article : Google Scholar : PubMed/NCBI
|