1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Eryilmaz E and Canpolat C: Novel agents
for the treatment of childhood leukemia: An update. OncoTargets
Ther. 10:3299–3306. 2017. View Article : Google Scholar
|
4
|
Showel MM and Levis M: Advances in
treating acute myeloid leukemia. F1000prime Rep. 6:962014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Turpin F, Tubiana-Hulin M, Meeus L, Goupil
A, Berlie J and Clavel B: Complications of antitumor and
antileukemic chemotherapy. 1. Sem Hop. 58:2047–2057. 1982.(In
French).
|
6
|
Hatzimichael E and Tuthill M:
Hematopoietic stem cell transplantation. Stem Cells Cloning.
3:105–117. 2010.PubMed/NCBI
|
7
|
Cox GJ, Matsui SM, Lo RS, Hinds M, Bowden
RA, Hackman RC, Meyer WG, Mori M, Tarr PI, Oshiro LS, et al:
Etiology and outcome of diarrhea after marrow transplantation: A
prospective study. Gastroenterology. 107:1398–1407. 1994.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Geller RB, Gilmore CE, Dix SP, Lin LS,
Topping DL, Davidson TG, Holland HK and Wingard JR: Randomized
trial of loperamide versus dose escalation of octreotide acetate
for chemotherapy-induced diarrhea in bone marrow transplant and
leukemia patients. Am J Hematol. 50:167–172. 1995. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gong XW, Xu YH, Chen XL and Wang YX:
Loperamide, an antidiarrhea drug, has antitumor activity by
inducing cell apoptosis. Pharmacol Res. 65:372–378. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Regan RC, Gogal RM Jr, Barber JP,
Tuckfield RC, Howerth EW and Lawrence JA: Cytotoxic effects of
loperamide hydrochloride on canine cancer cells. J Vet Med Sci.
76:1563–1568. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Goldar S, Khaniani MS, Derakhshan SM and
Baradaran B: Molecular mechanisms of apoptosis and roles in cancer
development and treatment. Asian Pac J Cancer Prev. 16:2129–2144.
2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Smart DJ, Halicka HD, Schmuck G, Traganos
F, Darzynkiewicz Z and Williams GM: Assessment of DNA double-strand
breaks and gammaH2AX induced by the topoisomerase II poisons
etoposide and mitoxantrone. Mutat Res. 641:43–47. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Leoni LM, Bailey B, Reifert J, Bendall HH,
Zeller RW, Corbeil J, Elliott G and Niemeyer CC: Bendamustine
(Treanda) displays a distinct pattern of cytotoxicity and unique
mechanistic features compared with other alkylating agents. Clin
Cancer Res. 14:309–317. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
van Attikum H and Gasser SM: The histone
code at DNA breaks: A guide to repair? Nat Rev Mol Cell Biol.
6:757–765. 2005. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou BB, Chaturvedi P, Spring K, Scott SP,
Johanson RA, Mishra R, Mattern MR, Winkler JD and Khanna KK:
Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by
inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol
Chem. 275:10342–10348. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gatei M, Sloper K, Sorensen C, Syljuäsen
R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J and
Khanna KK: Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent
phosphorylation of Chk1 on Ser-317 in response to ionizing
radiation. J Biol Chem. 278:14806–14811. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lavin MF, Birrell G, Chen P, Kozlov S,
Scott S and Gueven N: ATM signaling and genomic stability in
response to DNA damage. Mutat Res. 569:123–132. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Niida H and Nakanishi M: DNA damage
checkpoints in mammals. Mutagenesis. 21:3–9. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jackson SP and Bartek J: The DNA-damage
response in human biology and disease. Nature. 461:1071–1078. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Nijhawan D, Fang M, Traer E, Zhong Q, Gao
W, Du F and Wang X: Elimination of Mcl-1 is required for the
initiation of apoptosis following ultraviolet irradiation. Genes
Dev. 17:1475–1486. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sabattini E, Bacci F, Sagramoso C and
Pileri SA: WHO classification of tumours of haematopoietic and
lymphoid tissues in 2008: An overview. Pathologica. 102:83–87.
2010.PubMed/NCBI
|
22
|
Końca K, Lankoff A, Banasik A, Lisowska H,
Kuszewski T, Góźdź S, Koza Z and Wojcik A: A cross-platform public
domain PC image-analysis program for the comet assay. Mutat Res.
534:15–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Czabotar PE, Lessene G, Strasser A and
Adams JM: Control of apoptosis by the BCL-2 protein family:
Implications for physiology and therapy. Nat Rev Mol Cell Biol.
15:49–63. 2014. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Lazebnik YA, Kaufmann SH, Desnoyers S,
Poirier GG and Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase
by a proteinase with properties like ICE. Nature. 371:346–347.
1994. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Perkins ND: Integrating cell-signalling
pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol.
8:49–62. 2007. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Catlett-Falcone R, Landowski TH, Oshiro
MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L,
Fernández-Luna JL, Nuñez G, et al: Constitutive activation of Stat3
signaling confers resistance to apoptosis in human U266 myeloma
cells. Immunity. 10:105–115. 1999. View Article : Google Scholar : PubMed/NCBI
|
27
|
Martelli AM, Nyåkern M, Tabellini G,
Bortul R, Tazzari PL, Evangelisti C and Cocco L: Phosphoinositide
3-kinase/Akt signaling pathway and its therapeutical implications
for human acute myeloid leukemia. Leukemia. 20:911–928. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yao H, Mi S, Gong W, Lin J, Xu N, Perrett
S, Xia B, Wang J and Feng Y: Anti-apoptosis proteins Mcl-1 and
Bcl-xL have different p53-binding profiles. Biochemistry.
52:6324–6334. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Molinete M, Vermeulen W, Bürkle A,
Ménissier-de Murcia J, Küpper JH, Hoeijmakers JH and de Murcia G:
Overproduction of the poly(ADP-ribose) polymerase DNA-binding
domain blocks alkylation-induced DNA repair synthesis in mammalian
cells. EMBO J. 12:2109–2117. 1993.PubMed/NCBI
|
30
|
Jamil S, Stoica C, Hackett TL and Duronio
V: MCL-1 localizes to sites of DNA damage and regulates DNA damage
response. Cell Cycle. 9:2843–2855. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Swain U and Subba Rao K: Study of DNA
damage via the comet assay and base excision repair activities in
rat brain neurons and astrocytes during aging. Mech Ageing Dev.
132:374–381. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhou BB and Elledge SJ: The DNA damage
response: Putting checkpoints in perspective. Nature. 408:433–439.
2000. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Stokbroekx RA, Vandenberk J, Van Heertum
AH, Van Laar GM, van der Aa MJ, Van Bever WF and Janssen PA:
Synthetic antidiarrheal agents.
2,2-Diphenyl-4-(4′-aryl-4′-hydroxypiperidino)butyramides. J Med
Chem. 16:782–786. 1973. View Article : Google Scholar : PubMed/NCBI
|
34
|
Awouters F, Niemegeers CJ and Janssen PA:
Pharmacology of antidiarrheal drugs. Annu Rev Pharmacol Toxicol.
23:279–301. 1983. View Article : Google Scholar : PubMed/NCBI
|
35
|
Clay GA, Mackerer CR and Lin TK:
Interaction of loperamide with [3H]naloxone binding sites in guinea
pig brain and myenteric plexus. Mol Pharmacol. 13:533–540.
1977.PubMed/NCBI
|
36
|
Harper JL, Shin Y and Daly JW: Loperamide:
A positive modulator for store-operated calcium channels? Proc Natl
Acad Sci USA. 94:pp. 14912–14917. 1997; View Article : Google Scholar : PubMed/NCBI
|
37
|
Merritt JE, Brown BL and Tomlinson S:
Loperamide and calmodulin. Lancet. 1:2831982. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gillet JP, Calcagno AM, Varma S, Marino M,
Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V, et al:
Redefining the relevance of established cancer cell lines to the
study of mechanisms of clinical anti-cancer drug resistance. Proc
Natl Acad Sci USA. 108:pp. 18708–18713. 2011; View Article : Google Scholar : PubMed/NCBI
|
39
|
Gazdar AF, Gao B and Minna JD: Lung cancer
cell lines: Useless artifacts or invaluable tools for medical
science? Lung cancer. 68:309–318. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kirk R: Genetics: Personalized medicine
and tumour heterogeneity. Nat Rev Clin Oncol. 9:2502012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Thompson CB: Apoptosis in the pathogenesis
and treatment of disease. Science. 267:1456–1462. 1995. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jacobson MD, Weil M and Raff MC:
Programmed cell death in animal development. Cell. 88:347–354.
1997. View Article : Google Scholar : PubMed/NCBI
|
43
|
Westhoff MA, Marschall N and Debatin KM:
Novel approaches to apoptosis-inducing therapies. Adv Exp Med Biol.
930:173–204. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Salvesen GS and Dixit VM: Caspases:
Intracellular signaling by proteolysis. Cell. 91:443–446. 1997.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Simbulan-Rosenthal CM, Rosenthal DS, Iyer
S, Boulares AH and Smulson ME: Transient poly(ADP-ribosyl)ation of
nuclear proteins and role of poly(ADP-ribose) polymerase in the
early stages of apoptosis. J Biol Chem. 273:13703–13712. 1998.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Mills JR, Malina A and Pelletier J:
Inhibiting mitochondrial-dependent proteolysis of Mcl-1 promotes
resistance to DNA damage. Cell Cycle. 11:88–98. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lee JH and Paull TT: Activation and
regulation of ATM kinase activity in response to DNA double-strand
breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI
|