1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Peyromaure M, Valéri A, Rebillard X,
Beuzeboc P, Richaud P, Soulié M and Salomon L: CCAFU:
Characteristics of prostate cancer in men less than 50-year-old.
Prog Urol. 19:803–809. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Crouzet S, Rouviere O, Martin X and Gelet
A: High-intensity focused ultrasound as focal therapy of prostate
cancer. Curr Opin Urol. 24:225–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao X and Chua KJ: Regulating the
cryo-freezing region of biological tissue with a controlled thermal
device. Med Eng Phys. 36:325–334. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Smaletz O, Scher HI, Small EJ, Verbel DA,
McMillan A, Regan K, Kelly WK and Kattan MW: Nomogram for overall
survival of patients with progressive metastatic prostate cancer
after castration. J Clin Oncol. 20:3972–3982. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Asmane I, Céraline J, Duclos B, Rob L,
Litique V, Barthélémy P, Bergerat JP, Dufour P and Kurtz JE: New
strategies for medical management of castration-resistant prostate
cancer. Oncology. 80:1–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Saad F and Hotte SJ: Guidelines for the
management of castrate-resistant prostate cancer. Can Urol Assoc J.
4:380–384. 2010. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Petrylak DP: Current state of
castration-resistant prostate cancer. Am J Manag Care. 19 18
Suppl:S358–S365. 2013.PubMed/NCBI
|
10
|
de Bono JS, Logothetis CJ, Molina A,
Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F,
et al: Abiraterone and increased survival in metastatic prostate
cancer. N Engl J Med. 364:1995–2005. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Scher HI, Fizazi K, Saad F, Taplin ME,
Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et
al: Increased survival with enzalutamide in prostate cancer after
chemotherapy. N Engl J Med. 367:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tanimoto T, Hori A and Kami M:
Sipuleucel-T immunotherapy for castration-resistant prostate
cancer. N Engl J Med. 363:1966; author reply 1967–8. 2010.
|
13
|
Joung JY, Ha YS and Kim IY: Radium Ra 223
dichloride in castration-resistant prostate cancer. Drugs Today
(Barc). 49:483–490. 2013. View Article : Google Scholar
|
14
|
Pantziarka P, Bouche G, Meheus L, Sukhatme
V and Sukhatme VP: Repurposing drugs in your medicine cabinet:
Untapped opportunities for cancer therapy? Future Oncol.
11:181–184. 2015. View Article : Google Scholar
|
15
|
Pruksachatkunakorn C, Damrongsak M and
Sinthupuan S: Sulfur for scabies outbreaks in orphanages. Pediatr
Dermatol. 19:448–453. 2002. View Article : Google Scholar
|
16
|
Kenawi MZ, Morsy TA, Abdalla KF and el
Hady HM: Treatment of human scabies by sulfur and permethrin. J
Egypt Soc Parasitol. 23:691–696. 1993.
|
17
|
Duan F, Li Y, Chen L, Zhou X, Chen J, Chen
H and Li R: Sulfur inhibits the growth of androgen-independent
prostate cancer. Oncol Lett. 9:437–441. 2015. View Article : Google Scholar
|
18
|
Pantziarka P, Sukhatme V, Bouche G, Meheus
L and Sukhatme VP: Repurposing drugs in oncology
(ReDO)-itraconazole as an anti-cancer agent. Ecancermedicalscience.
9:5212015. View Article : Google Scholar
|
19
|
Theodorides VJ, Chang J, DiCUOLLO CJ,
Grass GM, Parish RC and Scott GC: Oxibendazole, a new broad
spectrum anthelmintic effective against gastrointestinal nematodes
of domestic animals. Br Vet J. 129:xcontdvii–scvi. 1973. View Article : Google Scholar
|
20
|
Kates KC, Colglazier ML and Enzie FD:
Oxibendazole: Critical anthelmintic trials in equids. Vet Rec.
97:442–444. 1975.
|
21
|
Theodorides VJ, Nawalinski T, Freeman JF
and Murphy JR: Efficacy of oxibendazole against gastrointestinal
nematodes of cattle. Am J Vet Res. 37:1207–1209. 1976.
|
22
|
Overgaauw PA and Boersema JH: Anthelmintic
efficacy of oxibendazole against some important nematodes in dogs
and cats. Vet Q. 20:69–72. 1998. View Article : Google Scholar
|
23
|
Rao PS, Ray UK, Gupta PB, Rao DV, Islam A,
Rajput P and Mukkanti K: Identification, isolation and
characterization of new impurity in rabeprazole sodium. J Pharm
Biomed Anal. 52:620–624. 2010. View Article : Google Scholar
|
24
|
Gaba M, Singh S and Mohan C:
Benzimidazole: An emerging scaffold for analgesic and
anti-inflammatory agents. Eur J Med Chem. 76:494–505. 2014.
View Article : Google Scholar
|
25
|
He Y, Yang J, Wu B, Risen L and Swayze EE:
Synthesis and biological evaluations of novel benzimidazoles as
potential antibacterial agents. Bioorg Med Chem Lett. 14:1217–1220.
2004. View Article : Google Scholar
|
26
|
Li Y, Tan C, Gao C, Zhang C, Luan X, Chen
X, Liu H, Chen Y and Jiang Y: Discovery of benzimidazole
derivatives as novel multi-target EGFR VEGFR-2 and PDGFR kinase
inhibitors. Bioorg Med Chem. 19:4529–4535. 2011. View Article : Google Scholar
|
27
|
Velik J, Baliharová V, Fink-Gremmels J,
Bull S, Lamka J and Skálová L: Benzimidazole drugs and modulation
of biotransformation enzymes. Res Vet Sci. 76:95–108. 2004.
View Article : Google Scholar
|
28
|
Králová V, Hanušová V, Staňková P,
Knoppová K, Čáňová K and Skálová L: Antiproliferative effect of
benzimidazole anthelmintics albendazole, ricobendazole, and
flubendazole in intestinal cancer cell lines. Anticancer Drugs.
24:911–919. 2013. View Article : Google Scholar
|
29
|
Hanusova V, Skalova L, Kralova V and
Matouskova P: Potential anti-cancer drugs commonly used for other
indications. Curr Cancer Drug Targets. 15:35–52. 2015. View Article : Google Scholar
|
30
|
Sridhar SS, Freedland SJ, Gleave ME,
Higano C, Mulders P, Parker C, Sartor O and Saad F:
Castration-resistant prostate cancer: From new pathophysiology to
new treatment. Eur Urol. 65:289–299. 2014. View Article : Google Scholar
|
31
|
Debes JD and Tindall DJ: Mechanisms of
androgen-refractory prostate cancer. N Engl J Med. 351:1488–1490.
2004. View Article : Google Scholar
|
32
|
Nagabhushan M, Miller CM, Pretlow TP,
Giaconia JM, Edgehouse NL, Schwartz S, Kung HJ, de Vere WR,
Gumerlock PH, Resnick MI, et al: CWR22: The first human prostate
cancer xenograft with strongly androgen-dependent and relapsed
strains both in vivo and in soft agar. Cancer Res. 56:3042–2046.
1996.PubMed/NCBI
|
33
|
Shen MM and Abate-Shen C: Molecular
genetics of prostate cancer: New prospects for old challenges.
Genes Dev. 24:1967–2000. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sramkoski RM, Pretlow TG II, Giaconia JM,
Pretlow TP, Schwartz S, Sy MS, Marengo SR, Rhim JS, Zhang D and
Jacobberger JW: A new human prostate carcinoma cell line, 22Rv1. In
Vitro Cell Dev Biol Anim. 35:403–409. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sturgeon CM, Hoffman BR, Chan DW, Ch'Ng
SL, Hammond E, Hayes DF, Liotta LA, Petricoin EF, Schmitt M, Semmes
OJ, et al: National academy of clinical biochemistry laboratory
medicine practice guidelines for use of tumor markers in clinical
practice: Quality requirements. Clin Chem. 54:e1–e10. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sardana G, Jung K, Stephan C and Diamandis
EP: Proteomic analysis of conditioned media from the PC3, LNCaP,
and 22Rv1 prostate cancer cell lines: Discovery and validation of
candidate prostate cancer biomarkers. J Proteome Res. 7:3329–3338.
2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li G, Petiwala SM, Nonn L and Johnson JJ:
Inhibition of CHOP accentuates the apoptotic effect of α-mangostin
from the mangosteen fruit (Garcinia mangostana) in 22Rv1 prostate
cancer cells. Biochem Biophys Res Commun. 453:75–80. 2014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kasimsetty SG, Bialonska D, Reddy MK,
Thornton C, Willett KL and Ferreira D: Effects of pomegranate
chemical constituents/intestinal microbial metabolites on CYP1B1 in
22Rv1 prostate cancer cells. J Agric Food Chem. 57:10636–10644.
2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang F, Jiang X, Song L, Wang H, Mei Z, Xu
Z and Xing N: Quercetin inhibits angiogenesis through
thrombospondin-1 upregulation to antagonize human prostate cancer
PC-3 cell growth in vitro and in vivo. Oncol Rep. 35:1602–1610.
2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
41
|
McDonald ER III, Wu GS, Waldman T and
El-Deiry WS: Repair defect in p21 WAF1/CIP1-/-human cancer cells.
Cancer Res. 56:2250–2255. 1996.PubMed/NCBI
|
42
|
Smith ML, Chen IT, Zhan Q, Bae I, Chen CY,
Gilmer TM, Kastan MB, O'Connor PM and Fornace AJ Jr: Interaction of
the p53-regulated protein Gadd45 with proliferating cell nuclear
antigen. Science. 266:1376–1380. 1994. View Article : Google Scholar : PubMed/NCBI
|
43
|
Theodorides VJ, DiCuollo CJ, Nawalinski T,
Miller CR, Murphy JR, Freeman JF, Killeen JC Jr and Rapp WR:
Toxicologic and teratologic studies of oxibendazole in ruminants
and laboratory animals. Am J Vet Res. 38:809–814. 1977.PubMed/NCBI
|
44
|
Stenman UH: Prostate-specific antigen,
clinical use and staging: An overview. Br J Urol. 79 Suppl
1:S53–S60. 1997. View Article : Google Scholar
|
45
|
Heinlein CA and Chang C: Androgen receptor
in prostate cancer. Endocr Rev. 25:276–308. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kim J and Coetzee GA: Prostate specific
antigen gene regulation by androgen receptor. J Cell Biochem.
93:233–241. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ding M, Lin B, Li T, Liu Y, Li Y, Zhou X,
Miao M, Gu J, Pan H, Yang F, et al: A dual yet opposite
growth-regulating function of miR-204 and its target XRN1 in
prostate adenocarcinoma cells and neuroendocrine-like prostate
cancer cells. Oncotarget. 6:7686–7700. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hermeking H: The miR-34 family in cancer
and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Östling P, Leivonen SK, Aakula A, Kohonen
P, Mäkelä R, Hagman Z, Edsjö A, Kangaspeska S, Edgren H, Nicorici
D, et al: Systematic analysis of microRNAs targeting the androgen
receptor in prostate cancer cells. Cancer Res. 71:1956–1567. 2011.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Shi XB, Xue L, Ma AH, Tepper CG,
Gandour-Edwards R, Kung HJ and DeVere WR: Tumor suppressive miR-124
targets androgen receptor and inhibits proliferation of prostate
cancer cells. Oncogene. 32:4130–4138. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Mikhaylova O, Stratton Y, Hall D, Kellner
E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J and
Czyzyk-Krzeska MF: VHL-regulated MiR-204 suppresses tumor growth
through inhibition of LC3B-mediated autophagy in renal clear cell
carcinoma. Cancer Cell. 21:532–546. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sacconi A, Biagioni F, Canu V, Mori F, Di
Benedetto A, Lorenzon L, Ercolani C, Di Agostino S, Cambria AM,
Germoni S, et al: miR-204 targets Bcl-2 expression and enhances
responsiveness of gastric cancer. Cell Death Dis. 3:e4232012.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H,
Li W, Hu B, Cheng SY and Li M: Loss of miR-204 expression enhances
glioma migration and stem cell-like phenotype. Cancer Res.
73:990–999. 2013. View Article : Google Scholar : PubMed/NCBI
|
54
|
Tai S, Sun Y, Squires JM, Zhang H, Oh WK,
Liang CZ and Huang J: PC3 is a cell line characteristic of
prostatic small cell carcinoma. Prostate. 71:1668–1679. 2011.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Palapattu GS, Wu C, Silvers CR, Martin HB,
Williams K, Salamone L, Bushnell T, Huang LS, Yang Q and Huang J:
Selective expression of CD44, a putative prostate cancer stem cell
marker, in neuroendocrine tumor cells of human prostate cancer.
Prostate. 69:787–798. 2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Simon RA, di Sant'Agnese PA, Huang LS, Xu
H, Yao JL, Yang Q, Liang S, Liu J, Yu R, Cheng L, et al: CD44
expression is a feature of prostatic small cell carcinoma and
distinguishes it from its mimickers. Hum Pathol. 40:252–258. 2009.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Liu C, Kelnar K, Liu B, Chen X,
Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et
al: The microRNA miR-34a inhibits prostate cancer stem cells and
metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Yin Y, Zhang B, Wang W, Fei B, Quan C,
Zhang J, Song M, Bian Z, Wang Q, Ni S, et al: miR-204-5p inhibits
proliferation and invasion and enhances chemotherapeutic
sensitivity of colorectal cancer cells by downregulating RAB22A.
Clin Cancer Res. 20:6187–6199. 2014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ryan J, Tivnan A, Fay J, Bryan K, Meehan
M, Creevey L, Lynch J, Bray IM, O'Meara A, Tracey L, et al:
MicroRNA-204 increases sensitivity of neuroblastoma cells to
cisplatin and is associated with a favourable clinical outcome. Br
J Cancer. 107:967–976. 2012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Liu J and Li Y: Trichostatin A and
Tamoxifen inhibit breast cancer cell growth by miR-204 and ERα
reducing AKT/mTOR pathway. Biochem Biophys Res Commun. 467:242–247.
2015. View Article : Google Scholar : PubMed/NCBI
|
61
|
van Bokhoven A, Varella-Garcia M, Korch C,
Johannes WU, Smith EE, Miller HL, Nordeen SK, Miller GJ and Lucia
MS: Molecular characterization of human prostate carcinoma cell
lines. Prostate. 57:205–225. 2003. View Article : Google Scholar : PubMed/NCBI
|
62
|
Wen S, Niu Y, Lee SO and Chang C: Androgen
receptor (AR) positive vs negative roles in prostate cancer cell
deaths including apoptosis, anoikis, entosis, necrosis and
autophagic cell death. Cancer Treat Rev. 40:31–40. 2014. View Article : Google Scholar : PubMed/NCBI
|
63
|
Vashchenko N and Abrahamsson PA:
Neuroendocrine differentiation in prostate cancer: Implications for
new treatment modalities. Eur Urol. 47:147–155. 2005. View Article : Google Scholar : PubMed/NCBI
|
64
|
Jin RJ, Wang Y, Masumori N, Ishii K,
Tsukamoto T, Shappell SB, Hayward SW, Kasper S and Matusik RJ:
NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in
castrated mice. Cancer Res. 64:5489–5495. 2004. View Article : Google Scholar : PubMed/NCBI
|
65
|
Beltran H, Rickman DS, Park K, Chae SS,
Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST, et
al: Molecular characterization of neuroendocrine prostate cancer
and identification of new drug targets. Cancer Discov. 1:487–495.
2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Li W, Cohen A, Sun Y, Squires J, Braas D,
Graeber TG, Du L, Li G, Li Z, Xu X, et al: The role of CD44 in
glucose metabolism in prostatic small cell neuroendocrine
carcinoma. Mol Cancer Res. 14:344–353. 2016. View Article : Google Scholar : PubMed/NCBI
|
67
|
Chi SW: Structural insights into the
transcription-independent apoptotic pathway of p53. BMB Rep.
47:167–172. 2014. View Article : Google Scholar : PubMed/NCBI
|
68
|
Huang YX, Zhou JX, Xue ZQ, Wu YX, Chen JY,
Wu HZ, Ji MH, Shen YP, Cao GQ, Wu ZX, et al: Clinical observations
on the treatment of hookworm, Ascaris and Trichuris infection with
oxibendazole. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za
Zhi. 8:100–103. 1990.(In Chinese). PubMed/NCBI
|