1
|
zur Hausen H: Papillomaviruses and cancer:
From basic studies to clinical application. Nat Rev Cancer.
2:342–350. 2002. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Muñoz N, Bosch FX, de Sanjosé S, Herrero
R, Castellsagué X, Shah KV, Snijders PJ and Meijer CJ:
International Agency for Research on Cancer Multicenter Cervical
Cancer Study Group: Epidemiologic classification of human
papillomavirus types associated with cervical cancer. N Engl J Med.
348:518–527. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ferlay J, Soerjomataram I, Ervik M,
Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and
Bray F: GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality
Worldwide: IARC Cancer Base No. 11[Internet]. Lyon, France:
International Agency for Research on Cancer; 2013, http://globocan.iarc.fr17–09. 2017
|
4
|
Bruni LB-R L, Serrano B, Brotons M, Cosano
R, Munoz J, Bosch FX, de Sanjosé S and Castellsagué X: ICO
Information centre on HPV and cancer (HPV Information Centre).
Human Papillomavirus and Related Diseases in México. Summary
Reports. 2014.
|
5
|
de Secretaría Salud: Información
estadística. Estadísticas de cáncer cervicouterino. https://www.gob.mx/cms/uploads/attachment/file/12951/MortalidadCaCu2000a2013.pdf30–05.
2016
|
6
|
Illades-Aguiar B, Alarcón-Romero Ldel C,
Antonio-Véjar V, Zamudio-López N, Sales-Linares N, Flores-Alfaro E,
Fernández-Tilapa G, Vences-Velázquez A, Muñoz-Valle JF and
Leyva-Vázquez MA: Prevalence and distribution of human
papillomavirus types in cervical cancer, squamous intraepithelial
lesions, and with no intraepithelial lesions in women from Southern
Mexico. Gynecol Oncol. 117:291–296. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pinto AP, Degen M, Villa LL and Cibas ES:
Immunomarkers in gynecologic cytology: The search for the ideal
‘biomolecular Papanicolaou test’. Acta Cytol. 56:109–121. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Pett M and Coleman N: Integration of
high-risk human papillomavirus: A key event in cervical
carcinogenesis? J Pathol. 212:356–367. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Badaracco G, Venuti A, Sedati A and
Marcante ML: HPV16 and HPV18 in genital tumors: Significantly
different levels of viral integration and correlation to tumor
invasiveness. J Med Virol. 67:574–582. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kalantari M, Karlsen F, Kristensen G, Holm
R, Hagmar B and Johansson B: Disruption of the E1 and E2 reading
frames of HPV 16 in cervical carcinoma is associated with poor
prognosis. Int J Gynecol Pathol. 17:146–153. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Romanczuk H and Howley PM: Disruption of
either the E1 or the E2 regulatory gene of human papillomavirus
type 16 increases viral immortalization capacity. Proc Natl Acad
Sci USA. 89:3159–3163. 1992. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jeon S and Lambert PF: Integration of
human papillomavirus type 16 DNA into the human genome leads to
increased stability of E6 and E7 mRNAs: Implications for cervical
carcinogenesis. Proc Natl Acad Sci USA. 92:1654–1658. 1995.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kalantari M, Blennow E, Hagmar B and
Johansson B: Physical state of HPV16 and chromosomal mapping of the
integrated form in cervical carcinomas. Diagn Mol Pathol. 10:46–54.
2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kalantari M, Villa LL, Calleja-Macias IE
and Bernard HU: Human papillomavirus-16 and −18 in penile
carcinomas: DNA methylation, chromosomal recombination and genomic
variation. Int J Cancer. 123:1832–1840. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
zur Hausen H: Papillomaviruses causing
cancer: Evasion from host-cell control in early events in
carcinogenesis. J Natl Cancer Inst. 92:690–698. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gallo G, Bibbo M, Bagella L, Zamparelli A,
Sanseverino F, Giovagnoli MR, Vecchione A and Giordano A: Study of
viral integration of HPV-16 in young patients with LSIL. J Clin
Pathol. 56:532–536. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang LW, Chao SL and Lee BH: Integration
of human papillomavirus type-16 and type-18 is a very early event
in cervical carcinogenesis. J Clin Pathol. 61:627–631. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kalantari M, Chase DM, Tewari KS and
Bernard HU: Recombination of human papillomavirus-16 and host DNA
in exfoliated cervical cells: A pilot study of L1 gene methylation
and chromosomal integration as biomarkers of carcinogenic
progression. J Med Virol. 82:311–320. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kulmala SM, Syrjänen SM, Gyllensten UB,
Shabalova IP, Petrovichev N, Tosi P, Syrjänen KJ and Johansson BC:
Early integration of high copy HPV16 detectable in women with
normal and low grade cervical cytology and histology. J Clin
Pathol. 59:513–517. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Peitsaro P, Johansson B and Syrjänen S:
Integrated human papillomavirus type 16 is frequently found in
cervical cancer precursors as demonstrated by a novel quantitative
real-time PCR technique. J Clin Microbiol. 40:886–891. 2002.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Das P, Thomas A, Mahantshetty U,
Shrivastava SK, Deodhar K and Mulherkar R: HPV genotyping and site
of viral integration in cervical cancers in Indian women. PLoS One.
7:e410122012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bird A: DNA methylation patterns and
epigenetic memory. Genes Dev. 16:6–21. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kalantari M, Calleja-Macias IE, Tewari D,
Hagmar B, Lie K, Barrera-Saldana HA, Wiley DJ and Bernard HU:
Conserved methylation patterns of human papillomavirus type 16 DNA
in asymptomatic infection and cervical neoplasia. J Virol.
78:12762–12772. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lorincz AT, Brentnall AR, Vasiljević N,
Scibior-Bentkowska D, Castanon A, Fiander A, Powell N, Tristram A,
Cuzick J and Sasieni P: HPV16 L1 and L2 DNA methylation predicts
high-grade cervical intraepithelial neoplasia in women with mildly
abnormal cervical cytology. Int J Cancer. 133:637–644. 2013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Turan T, Kalantari M, Calleja-Macias IE,
Cubie HA, Cuschieri K, Villa LL, Skomedal H, Barrera-Saldaña HA and
Bernard HU: Methylation of the human papillomavirus-18 L1 gene: A
biomarker of neoplastic progression? Virology. 349:175–183. 2006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Turan T, Kalantari M, Cuschieri K, Cubie
HA, Skomedal H and Bernard HU: High-throughput detection of human
papillomavirus-18 L1 gene methylation, a candidate biomarker for
the progression of cervical neoplasia. Virology. 361:185–193. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Brandsma JL, Sun Y, Lizardi PM, Tuck DP,
Zelterman D, Haines GK III, Martel M, Harigopal M, Schofield K and
Neapolitano M: Distinct human papillomavirus type 16 methylomes in
cervical cells at different stages of premalignancy. Virology.
389:100–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Oka N, Kajita M, Nishimura R, Ohbayashi C
and Sudo T: L1 gene methylation in high-risk human papillomaviruses
for the prognosis of cervical intraepithelial neoplasia. Int J
Gynecol Cancer. 23:235–243. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun C, Reimers LL and Burk RD: Methylation
of HPV16 genome CpG sites is associated with cervix precancer and
cancer. Gynecol Oncol. 121:59–63. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Evans MF, Aliesky HA and Cooper K:
Optimization of biotinyl-tyramide-based in situ hybridization for
sensitive background-free applications on formalin-fixed,
paraffin-embedded tissue specimens. BMC Clin Pathol. 3:22003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Evans MF, Mount SL, Beatty BG and Cooper
K: Biotinyl-tyramide-based in situ hybridization signal patterns
distinguish human papillomavirus type and grade of cervical
intraepithelial neoplasia. Mod Pathol. 15:1339–1347. 2002.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Vega-Peña A, Illades-Aguiar B,
Flores-Alfaro E, López-Bayghen E, Leyva-Vázquez MA,
Castañeda-Saucedo E and Alarcón-Romero Ldel C: Risk of progression
of early cervical lesions is associated with integration and
persistence of HPV-16 and expression of E6, Ki-67, and telomerase.
J Cytol. 30:226–232. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zubillaga-Guerrero MI, Illades-Aguiar B,
Leyva-Vazquez MA, Flores-Alfaro E, Castañeda-Saucedo E, Muñoz-Valle
JF and Alarcón-Romero LC: The integration of HR-HPV increases the
expression of cyclins A and E in cytologies with and without
low-grade lesions. J Cytol. 30:1–7. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ausubel F, Brent R, Kingston R, Moore D,
Seidman JG, Smith JA and Struhl K: Short Protocols in Molecular
Biology. 2–3. 1995.
|
35
|
Kleter B, van Doorn LJ, Schrauwen L,
Molijn A, Sastrowijoto S, Schegget Ter J, Lindeman J, Harmsel Ter
B, Burger M and Quint W: Development and clinical evaluation of a
highly sensitive PCR-reverse hybridization line probe assay for
detection and identification of anogenital human papillomavirus. J
Clin Microbiol. 37:2508–2517. 1999.PubMed/NCBI
|
36
|
Solomon D, Davey D, Kurman R, Moriarty A,
O'Connor D, Prey M, Raab S, Sherman M, Wilbur D, Wright T Jr, et
al: The 2001 Bethesda system: Terminology for reporting results of
cervical cytology. JAMA. 287:2114–2119. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Benedet JL, Bender H, Jones H III, Ngan HY
and Pecorelli S: FIGO staging classifications and clinical practice
guidelines in the management of gynecologic cancers. FIGO Committee
on Gynecologic Oncology. Int J Gynaecol Obstet. 70:209–262. 2000.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Badal S, Badal V, Calleja-Macias IE,
Kalantari M, Chuang LS, Li BF and Bernard HU: The human
papillomavirus-18 genome is efficiently targeted by cellular DNA
methylation. Virology. 324:483–492. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Reuschenbach M, Huebbers CU, Prigge ES,
Bermejo JL, Kalteis MS, Preuss SF, Seuthe IM, Kolligs J, Speel EJ,
Olthof N, et al: Methylation status of HPV16 E2-binding sites
classifies subtypes of HPV-associated oropharyngeal cancers.
Cancer. 121:1966–1976. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang D, Zhang Q, Zhou L, Huo L, Zhang Y,
Shen Z and Zhu Y: Comparison of prevalence, viral load, physical
status and expression of human papillomavirus-16, −18 and −58 in
esophageal and cervical cancer: A case-control study. BMC Cancer.
10:6502010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Flores R, Papenfuss M, Klimecki WT and
Giuliano AR: Cross-sectional analysis of oncogenic HPV viral load
and cervical intraepithelial neoplasia. Int J Cancer.
118:1187–1193. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Saunier M, Monnier-Benoit S, Mauny F,
Dalstein V, Briolat J, Riethmuller D, Kantelip B, Schwarz E, Mougin
C and Prétet JL: Analysis of human papillomavirus type 16 (HPV16)
DNA load and physical state for identification of HPV16-infected
women with high-grade lesions or cervical carcinoma. J Clin
Microbiol. 46:3678–3685. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Chang L, He X, Yu G and Wu Y:
Effectiveness of HPV 16 viral load and the E2/E6 ratio for the
prediction of cervical cancer risk among Chinese women. J Med
Virol. 85:646–654. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kwiecien R, Kopp-Schneider A and Blettner
M: Concordance analysis: Part 16 of a series on evaluation of
scientific publications. Dtsch Arztebl Int. 108:515–521.
2011.PubMed/NCBI
|
46
|
Fernandez AF, Rosales C, Lopez-Nieva P,
Graña O, Ballestar E, Ropero S, Espada J, Melo SA, Lujambio A,
Fraga MF, et al: The dynamic DNA methylomes of double-stranded DNA
viruses associated with human cancer. Genome Res. 19:438–451. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kalantari M, Osann K, Calleja-Macias IE,
Kim S, Yan B, Jordan S, Chase DM, Tewari KS and Bernard HU:
Methylation of human papillomavirus 16, 18, 31, and 45 L2 and L1
genes and the cellular DAPK gene: Considerations for use as
biomarkers of the progression of cervical neoplasia. Virology.
448:314–321. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mirabello L, Schiffman M, Ghosh A,
Rodriguez AC, Vasiljevic N, Wentzensen N, Herrero R, Hildesheim A,
Wacholder S, Scibior-Bentkowska D, et al: Elevated methylation of
HPV16 DNA is associated with the development of high grade cervical
intraepithelial neoplasia. Int J Cancer. 132:1412–1422. 2013.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Clarke MA, Wentzensen N, Mirabello L,
Ghosh A, Wacholder S, Harari A, Lorincz A, Schiffman M and Burk RD:
Human papillomavirus DNA methylation as a potential biomarker for
cervical cancer. Cancer Epidemiol Biomarkers Prev. 21:2125–2137.
2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mirabello L, Frimer M, Harari A, McAndrew
T, Smith B, Chen Z, Wentzensen N, Wacholder S, Castle PE,
Raine-Bennett T, et al: HPV16 methyl-haplotypes determined by a
novel next-generation sequencing method are associated with
cervical precancer. Int J Cancer. 136:E146–E153. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Brandsma JL, Harigopal M, Kiviat NB, Sun
Y, Deng Y, Zelterman D, Lizardi PM, Shabanova VS, Levi A, Yaping T,
et al: Methylation of twelve CpGs in human papillomavirus type 16
(HPV16) as an informative biomarker for the triage of women
positive for HPV16 infection. Cancer Prev Res (Phila). 7:526–533.
2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ortiz-Ortiz J, Alarcón-Romero Ldel C,
Jiménez-Lopez MA, Garzón-Barrientos VH, Calleja-Macías I,
Barrera-Saldaña HA, Leyva-Vázquez MA and Illades-Aguiar B:
Association of human papillomavirus 16 E6 variants with cervical
carcinoma and precursor lesions in women from Southern Mexico.
Virol J. 12:292015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Vinokurova S, Wentzensen N, Kraus I, Klaes
R, Driesch C, Melsheimer P, Kisseljov F, Dürst M, Schneider A and
von Knebel Doeberitz M: Type-dependent integration frequency of
human papillomavirus genomes in cervical lesions. Cancer Res.
68:307–313. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Fujii T, Masumoto N, Saito M, Hirao N,
Niimi S, Mukai M, Ono A, Hayashi S, Kubushiro K, Sakai E, et al:
Comparison between in situ hybridization and real-time PCR
technique as a means of detecting the integrated form of human
papillomavirus 16 in cervical neoplasia. Diagn Mol Pathol.
14:103–108. 2005. View Article : Google Scholar : PubMed/NCBI
|
55
|
Biesaga B, Szostek S, Klimek M, Jakubowicz
J and Wysocka J: Comparison of the sensitivity and specificity of
real-time PCR and in situ hybridization in HPV16 and 18 detection
in archival cervical cancer specimens. Folia Histochem Cytobiol.
50:239–247. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Bryant D, Tristram A, Liloglou T, Hibbitts
S, Fiander A and Powell N: Quantitative measurement of Human
Papillomavirus type 16 L1/L2 DNA methylation correlates with
cervical disease grade. J Clin Virol. 59:24–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Bryan JT, Taddeo F, Skulsky D, Jansen KU,
Frain BM, Qadadri B and Brown DR: Detection of specific human
papillomavirus types in paraffin-embedded sections of cervical
carcinomas. J Med Virol. 78:117–124. 2006. View Article : Google Scholar : PubMed/NCBI
|
58
|
De Marchi Triglia R, Metze K, Zeferino LC
and De Angelo Andrade Lucci LA: HPV in situ hybridization signal
patterns as a marker for cervical intraepithelial neoplasia
progression. Gynecol Oncol. 112:114–118. 2009. View Article : Google Scholar : PubMed/NCBI
|