Molecular challenges of neuroendocrine tumors (Review)
- Authors:
- Parthik Patel
- Karina Galoian
-
Affiliations: Department of Orthopedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA - Published online on: December 21, 2017 https://doi.org/10.3892/ol.2017.7680
- Pages: 2715-2725
This article is mentioned in:
Abstract
Takano A, Oriuchi N, Tsushima Y, Taketomi-Takahashi A, Nakajima T, Arisaka Y, Higuchi T, Amanuma M and Endo K: Detection of metastatic lesions from malignant pheochromocytoma and paraganglioma with diffusion-weighted magnetic resonance imaging: Comparison with 18F-FDG positron emission tomography and 123I-MIBG scintigraphy. Ann Nucl Med. 22:395–401. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, Conte-Devolx B, Falchetti A, Gheri RG, Libroia A, et al: Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 86:5658–5671. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sherman SI, Brierley JD, Sperling M, Ain KB, Bigos ST, Cooper DS, Haugen BR, Ho M, Klein I, Ladenson PW, et al: Initial analysis of staging and outcomes from a prospective multicenter study of treatment of thyroid carcinoma. Thyroid. 83:1012–1021. 1998. | |
Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M and Modlin IM: The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 40:1–18. 2011. View Article : Google Scholar : PubMed/NCBI | |
Washington MK, Tang LH, Berlin J, Branton PA, Burgart LJ, Carter DK, Compton CC, Fitzgibbons PL, Frankel WL, Jessup JM, et al: Protocol for the examination of specimens from patients with neuroendocrine tumors (carcinoid tumors) of the small intestine and ampulla. Arch Pathol Lab Med. 134:181–186. 2010.PubMed/NCBI | |
Heymann MF, Joubert M, Nemeth J, Franc B, Visset J, Hamy A, le Borgne J, le Neel JC, Murat A, Cordel S, et al: Prognostic and immunohistochemical validation of the capella classification of pancreatic neuroendocrine tumours: An analysis of 82 sporadic cases. Histopathology. 36:421–432. 2000. View Article : Google Scholar : PubMed/NCBI | |
Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, Krasinskas AM, Jang KT, Frankel WL, Balci S, et al: The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 39:683–690. 2015. View Article : Google Scholar : PubMed/NCBI | |
Strosberg JR, Cheema A, Weber J, Han G, Coppola D and Kvols LK: Prognostic relevance of a novel American Joint Committee on Cancer staging classification for neuroendocrine tumors of the pancreas. J Clin Oncol. 29:3044–3049. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jann H, Roll S, Couvelard A, Hentic O, Pavel M, Müller-Nordhorn J, Koch M, Röcken C, Rindi G, Ruszniewski P, et al: Neuroendocrine tumors of midgut and hindgut origin: Tumor-node-metastasis classification determines clinical outcome. Cancer. 117:3332–3341. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pape UF, Jann H, Müller-Nordhorn J, Bockelbrink A, Berndt U, Willich SN, Koch M, Röcken C, Rindi G and Wiedenmann B: Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer. 113:256–265. 2008. View Article : Google Scholar : PubMed/NCBI | |
Przygodzki RM, Finkelstein SD, Langer JC, Swalsky PA, Fishback N, Bakker A, Guinee DG, Koss M and Travis WD: Analysis of p53, K-ras-2 and C-raf-1 in pulmonary neuroendocrine tumors. Correlation with histological subtype and clinical outcome. Am J Pathol. 148:1531–1541. 1996.PubMed/NCBI | |
Travis WD, Rush W, Flieder DB, Falk R, Fleming MV, Gal AA and Koss MN: Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol. 22:934–944. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fink G, Krelbaum T, Yellin A, Bendayan D, Saute M, Glazer M and Kramer MR: Pulmonary carcinoid: Presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest. 119:1647–1651. 2001. View Article : Google Scholar : PubMed/NCBI | |
Srivastava A and Hornick JL: Immunohistochemical staining for CDX-2, PDX-1, NESP-55 and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol. 33:626–632. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cardillo G, Sera F, Di Martino M, Graziano P, Giunti R, Carbone L, Facciolo F and Martelli M: Bronchial carcinoid tumors: Nodal status and long-term survival after resection. Ann Thorac Surg. 77:1781–1785. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okike N, Bernatz PE and Woolner LB: Carcinoid tumors of the lung. Ann Thorac Surg. 22:270–275. 1976. View Article : Google Scholar : PubMed/NCBI | |
Moran CA, Suster S, Coppola D and Wick MR: Neuroendocrine carcinomas of the lung: A critical analysis. Am J Clin Pathol. 131:206–221. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wollina U, Langer D and Tchernev G: Mushroom-like skin tumours: Report of three cases. Open Access Maced J Med Sci. 5:515–517. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gerer KF, Erdmann M, Hadrup SR, Lyngaa R, Martin LM, Voll RE, Schuler-Thurner B, Schuler G, Schaft N, Hoyer S and Dörrie J: Preclinical evaluation of NF-κB-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination. The Adv Med Oncol. 9:451–464. 2017. View Article : Google Scholar | |
Sauer CM, Haugg AM, Chteinberg E, Rennspiess D, Winnepenninckx V, Speel EJ, Becker JC, Kurz AK and Zur Hausen A: Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma. Crit Rev Oncol Hematol. 116:99–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Murakami I, Takata K, Matsushita M, Nonaka D, Iwasaki T, Kuwamoto S, Kato M, Mohri T, Nagata K, Kitamura Y, et al: Immunoglobulin expressions are only associated with MCPyV-positive Merkel cell carcinomas but not with MCPyV-negative ones: Comparison of prognosis. Am J Surg Pathol. 38:1627–1635. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kulke MH, Siu LL, Tepper JE, Fisher G, Jaffe D, Haller DG, Ellis LM, Benedetti JK, Bergsland EK, Hobday TJ, et al: Future directions in the treatment of neuroendocrine tumors: Consensus report of the National Cancer Institute Neuroendocrine Tumor clinical trials planning meeting. J Clin Oncol. 29:934–943. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mosquera C, Koutlas NJ and Fitzgerald TL: Localized high-grade gastroenteropancreatic neuroendocrine tumors: Defining prognostic and therapeutic factors for a disease of increasing clinical significance. Eur J Surg Oncol. 42:1471–1477. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim JY and Hong SM: Recent updates on neuroendocrine tumors from the gastrointestinal and pancreatobiliary Tracts. Arch Pathol Lab Med. 140:437–448. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schindl M, Kaczirek K, Kaserer K and Niederle B: Is the new classification of neuroendocrine pancreatic tumors of clinical help? World J Surg. 24:1312–1318. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A and Evans DB: One hundred years after ‘carcinoid’: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 26:3063–3072. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vinik AI and Renar IP: Neuroendocrine tumors of carcinoid varietyEndocrinology. De Grool L: WB Saunders; Philadelphia, PA: pp. 2803–2814. 1995, PubMed/NCBI | |
Oberg K and Castellano D: Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev. 30:3–7. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klimstra DS, Modlin IR, Adsay NV, Chetty R, Deshpande V, Gönen M, Jensen RT, Kidd M, Kulke MH, Lloyd RV, et al: Pathology reporting of neuroendocrine tumors: Application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol. 34:300–313. 2010. View Article : Google Scholar : PubMed/NCBI | |
Travis WB, Brambilla E, Muller-Hermelink and Harris CC: Pathology and genetics of tumours of lung, pleura, thymus and heart. IARC Press, Lyon. 10:1240–1242. 2004. | |
Klimstra DS, Modlin IR, Coppola D, Lloyd RV and Suster S: The pathologic classification of neuroendocrine tumors: A review of nomenclature, grading and staging system. Pancreas. 39:707–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pelosi G, Volante M, Papotti M, Sonzogni A, Masullo M and Viale G: Peptide receptors in neuroendocrine tumors of the lung as potential radionuclide diagnosis and therapy. Q J Nucl Med Mol Imaging. 50:272–287. 2006.PubMed/NCBI | |
Bosman FT: Neuroendocrine cells in non-endocrine tumors: What does it mean? Ges Path. 81:62–72. 1996. | |
Cueto A, Burigana F, Nicolini A and Lugnani F: Neuroendocrine tumors of the lung: Histological classification, diagnosis, traditional and new therapeutic approaches. Curr Med Chem. 21:1107–1116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kaltsas G, Androulakis II, de Herder WW and Grossman AB: Paraneoplastic syndromes secondary to neuroendocrine tumours. Endocr Relat Cancer. 17:R173–R193. 2010. View Article : Google Scholar : PubMed/NCBI | |
Keffer JH: Endocrinopathy and ectopic hormones in malignancy. Hematol Oncol Clin North Am. 10:811–823. 1996. View Article : Google Scholar : PubMed/NCBI | |
Bollanti L, Riondino G and Strollo F: Endocrine paraneoplastic syndromes with special reference to the elderly. Endocrine. 14:151–157. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hollander IJ and Aponte GE: Ectopic hormone production by malignant tumors. Ann Clin Lab Sci. 9:268–274. 1979.PubMed/NCBI | |
Das S, Mukherjee K, Bhattacharya S and Chowdhury JR: Ectopic production of placental hormones (human chorionic gonadotropin and human placental lactogen) in carcinoma of the uterine cervix. Cancer. 51:1854–1857. 1983. View Article : Google Scholar : PubMed/NCBI | |
Mnif Feki M, Mnif F, Kamoun M, Charfi N, Rekik N, Bennaceur B, Mnif L, Sellami Boudawara T and Abid M: Ectopic secretion of GHRH by a pancreatic neuroendocrine tumor associated with an empty sella. Ann Endocrinol (Paris). 72:522–525. 2011. View Article : Google Scholar : PubMed/NCBI | |
Glikson M, Gil-Ad I, Galun E, Dresner R, Zilberman S, Halperin Y, Okon E, Laron Z and Rubinow A: Acromegaly due to ectopic growth hormone-releasing hormone secretion by a bronchial carcinoid tumour. Dynamic hormonal responses to various stimuli. Acta Endocrinol (Copenh). 125:366–371. 1991.PubMed/NCBI | |
Garby L, Caron P, Claustrat F, Chanson P, Tabarin A, Rohmer V, Arnault G, Bonnet F, Chabre O, Christin-Maitre S, et al: Clinical characteristics and outcome of acromegaly induced by ectopic secretion of growth hormone-releasing hormone (GHRH): A French nationwide series of 21 cases. GTE Group. J Clin Endocrinol Metab. 97:2093–2104. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hubold C and Brabant G: Ectopic hormone secretion by neuroendocrine tumors. Internist (Berl). 53:145–151. 2012.(In German). View Article : Google Scholar : PubMed/NCBI | |
Baylin SB and Mendelsohn G: Ectopic (inappropriate) hormone production by tumors: Mechanisms involved and the biological and clinical implications. Endocrin Rev. 1:45–77. 1980. View Article : Google Scholar | |
Yamasaki R, Saito H, Sano T, Kameyama K, Yoshimoto K, Hosoi E, Matsumura M, Harada K and Saito S: Ectopic growth hormone-releasing hormone (GHRH) syndrome in a case with multiple endocrine neoplasia type I. Endocrinol Jpn. 35:97–109. 1988. View Article : Google Scholar : PubMed/NCBI | |
Hochwald SN, Zee S, Conlon KC, Colleoni R, Louie O, Brennan MF and Klimstra DS: Prognostic factors in pancreatic endocrine neoplasms: An analysis of 136 cases with a proposal for low-grade and intermediate-grade groups. J Clin Oncol. 20:2633–2642. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hoang MP, Hruban RH and Albores-Saavedra J: Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: A distinctive neoplasm of von Hippel-Lindau disease. Am J Surg Pathol. 25:602–609. 2001. View Article : Google Scholar : PubMed/NCBI | |
Klöppel G, Perren A and Heitz PU: The gastroenteropancreatic neuroendocrine cell system and its tumors: The WHO classification. Ann N Y Acad Sci. 1014:13–27. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kamp K, Feelders RA, van Adrichem RC, de Rijke YB, van Nederveen FH, Kwekkeboom DJ and de Herder WW: Parathyroid hormone-related peptide (PTHrP) secretion by gastroenteropancreatic neuroendocrine tumors (GEP-NETs): Clinical features, diagnosis, management, and follow-up. J Clin Endocrinol Metab. 99:3060–3069. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schally AV, Comaru-Schally AM, Nagy A, Kovacs M, Szepeshazi K, Plonowski A, Varga JL and Halmos G: Hypothalamic hormones and cancer. Front Neuroendocrinol. 22:248–291. 2001. View Article : Google Scholar : PubMed/NCBI | |
Szereday Z, Schally AV, Varga JL, Kanashiro CA, Hebert F, Armatis P, Groot K, Szepeshazi K, Halmos G and Busto R: Antagonists of growth hormone-releasing hormone inhibit the proliferation of experimental non-small cell lung carcinoma. Cancer Res. 63:7913–7919. 2003.PubMed/NCBI | |
Szepeshazi K, Schally AV, Groot K, Armatis P, Hebert F and Halmos G: Antagonists of growth hormone-releasing hormone (GH-RH) inhibit in vivo proliferation of experimental pancreatic cancers and decrease IGF-II levels in tumours. Eur J Cancer. 36:128–136. 2000. View Article : Google Scholar : PubMed/NCBI | |
Szepeshazi K, Block NL and Schally AV: The use of peptide analogs for the treatment of gastrointestinal, pancreatic, liver and urinary bladder cancers. Horm Mol Biol Clin Investig. 1:103–110. 2010.PubMed/NCBI | |
Cidon EU: New therapeutic approaches to metastatic gastroenteropancreatic neuroendocrine tumors: A glimpse into the future. World J Gastrointest Oncol. 9:4–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wolin EM: The expanding role of somatostatin analogs in the management of neuroendocrine tumors. Gastrointest Cancer Res. 5:161–168. 2012.PubMed/NCBI | |
Baldelli R, Barnabei A, Rizza L, Isidori AM, Rota F, Di Giacinto P, Paoloni A, Torino F, Corsello SM, Lenzi A and Appetecchia M: Somatostatin analogs therapy in gastroenteropancreatic neuroendocrine tumors: Current aspects and new perspectives. Front Endocrinol (Lausanne). 5:72014.PubMed/NCBI | |
Sidéris L, Dubé P and Rinke A: Antitumor effects of somatostatin analogs in neuroendocrine tumors. Oncologist. 17:747–755. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boden G, Ryan IG, Eisenschmid BL, Shelmet JJ and Owen OE: Treatment of inoperable glucagonoma with the long-acting somatostatin analogue SMS 201–995. N Engl J Med. 314:1686–1689. 1986. View Article : Google Scholar : PubMed/NCBI | |
Vezzosi D, Bennet A, Rochaix P, Courbon F, Selves J, Pradere B, Buscail L, Susini C and Caron P: Octreotide in insulinoma patients: Efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur J Endocrinol. 152:757–67. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pollak MN and Schally AV: Mechanisms of antineoplastic action of somatostatin analogs. Proc Soc Exp Biol Med. 217:pp. 143–152. 1998; View Article : Google Scholar : PubMed/NCBI | |
Arnold R, Trautmann ME, Creutzfeldt W, Benning R, Benning M, Neuhaus C, Jurgensen R, Stein K, Schafer H, Bruns C, et al: Somatostatin analogue octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut. 38:430–438. 1996. View Article : Google Scholar : PubMed/NCBI | |
Oberg K, Krenning E, Sundin A, Bodei L, Kidd M, Tesselaar M, Ambrosini V, Baum RP, Kulke M, Pavel M, et al: Delphic consensus assessment: Imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr Connect. 5:174–187. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oberg K and Jelic S; ESMO Guidelines Working Group, : Neuroendocrine gastroenteropancreatic tumors: ESMO clinical recommendation for diagnosis, treatment and follow-up. Ann Oncol. 20:150–153. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qian ZR, Li T, Ter-Minassian M, Yang J, Chan JA, Brais LK, Masugi Y, Thiaglingam A, Brooks N, Nishihara R, et al: Association between somatostatin receptor expression and clinical outcomes in neuroendocrine tumors. Pancreas. 45:1386–1393. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bruns C, Lewis I, Briner U, Meno-Tetang G and Weckbecker G: SOM230: A novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol. 146:707–716. 2002. View Article : Google Scholar : PubMed/NCBI | |
Capdevila J, Weber M and Pape UF: Continued advances in targeting gastroenteropancreatic neuroendocrine tumors: General discussion. Clin Adv Hematol oncol. 12(12 Suppl 19): S222014. | |
Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321:1801–1806. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fazio N, Abdel-Rahman O, Spada F, Galdy S, De Dosso S, Capdevila J and Scarpa A: A RAF signaling in neuroendocrine neoplasms: From bench to bedside. Cancer Treat Rev. 40:974–979. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gómez K, Varghese J and Jiménez C: Medullary thyroid carcinoma: Molecular signaling pathways and emerging therapies. J Thyroid Res. 2011:8158262011. View Article : Google Scholar : PubMed/NCBI | |
Cristea S and Sage J: Is the canonical RAF/MEK/ERK signaling pathway a therapeutic target in SCLC? J Thorac Oncol. 11:1233–1241. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jochmanová I, Zelinka T, Widimský J Jr and Pacak K: HIF signaling pathway in pheochromocytoma and other neuroendocrine tumors. Physiol Res. 63 Suppl 2:S251–S262. 2014.PubMed/NCBI | |
Trobridge P, Knoblaugh S, Washington MK, Munoz NM, Tsuchiya KD, Rojas A, Song X, Ulrich CM, Sasazuki T, Shirasawa S and Grady WM: TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology. 136:1680–1688. e7. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brambilla E and Gazdar A: Pathogenesis of lung cancer signalling pathways: Roadmap for therapies. Eur Respir J. 33:1485–1497. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vlotides G, Tanyeri A, Spampatti M, Zitzmann K, Chourdakis M, Spttl C, Maurer J, Nölting S, Göke B and Auernhammer CJ: Anticancer effects of metformin on neuroendocrine tumor cells in vitro. Hormones Athens. 13:498–508. 2014.PubMed/NCBI | |
Chen Y, Nowak I, Huang J, Keng PC, Sun H, Xu H, Wei G and Lee SO: Erk/MAP kinase signaling pathway and neuroendocrine differentiation of non-small-cell lung cancer. J Thorac Oncol. 9:50–58. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB and Ball DW: Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 61:3200–3205. 2001.PubMed/NCBI | |
Lee HY, Chun KH, Liu B, Wiehle SA, Cristiano RJ, Hong WK, Cohen P and Kurie JM: Insulin-like growth factor binding protein-3 inhibits the growth of non-small cell lung cancer. Cancer Res. 62:3530–3537. 2002.PubMed/NCBI | |
Cortez E, Gladh H, Braun S, Bocci M, Cordero E, Björkström NK, Miyazaki H, Michael IP, Eriksson U, Folestad E and Pietras K: Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD. Proc Natl Acad Sci USA. 113:pp. E864–E873. 2016; View Article : Google Scholar : PubMed/NCBI | |
Kunnimalaiyaan M and Chen H: Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist. 12:535–542. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cakir M, Dworakowska D and Grossman A: Somatostatin receptor biology in neuroendocrine and pituitary tumours: Part 1-molecular pathways. J Cell Mol Med. 14:2570–2584. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zarebczan B and Chen H: Signaling mechanisms in neuroendocrine tumors as targets for therapy. Endocrinol Metab Clin North Am. 39:8018–8010. 2010. View Article : Google Scholar | |
de Groot JW, Links TP, Plukker JT, Lips CJ and Hofstra RM: RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev. 27:535–560. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shen MM and Abate-Shen C: Molecular genetics of prostate cancer: New prospects for old challenges. Genes Dev. 24:1967–2000. 2010. View Article : Google Scholar : PubMed/NCBI | |
Younes N, Fulton N, Tanaka R, Wayne J, Straus FH II and Kaplan EL: The presence of K-12 ras mutations in duodenal adenocarcinomas and the absence of ras mutations in other small bowel adenocarcinomas and carcinoid tumors. Cancer. 79:1804–1808. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ravi RK, Weber E, McMahon M, Williams JR, Baylin S, Mal A, Harter ML, Dillehay LE, Claudio PP, Giordano A, et al: Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest. 101:153–159. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ravi R, Thiagalingam A, Weber E, McMahon M, Nelkin BD and Mabry M: Raf-1 causes growth suppression and alteration of neuroendocrine markers in DMS53 human small-cell lung cancer cells. Am J Respir Cell Mol Biol. 20:543–549. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sippel RS, Carpenter JE, Kunnimalaiyaan M, Lagerholm S and Chen H: Raf-1 activation suppresses neuroendocrine marker and hormone levels in human gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol. 285:G245–G254. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Gompel J, Kunnimalaiyaan M, Holen K and Chen H: ZM336372, a Raf-1 activator, suppresses growth and neuroendocrine hormone levels in carcinoid tumor cells. Mol Cancer Ther. 4:910–917. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 110:163–175. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA and Sabatini DM: PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 25:903–915. 2007. View Article : Google Scholar : PubMed/NCBI | |
Villaume K, Blanc M, Gouysse G, Walter T, Couderc C, Nejjari M, Vercherat C, Cordier-Bussat M, Roche C and Scoazec JY: VEGF secretion by neuroendocrine tumor cells is inhibited by octreotide and by inhibitors of the PI3K/AKT/mTOR pathway. Neuroendocrinology. 91:268–278. 2010. View Article : Google Scholar : PubMed/NCBI | |
Couderc C, Poncet G, Villaume K, Blanc M, Gadot N, Walter T, Lepinasse F, Hervieu V, Cordier-Bussat M and Scoazec JY: Targeting the PI3K/mTOR pathway in murine endocrine cell lines: In vitro and in vivo effects on tumor cell growth. Am J Pathol. 178:336–344. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vivanco I and Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI | |
Krystal GW, Sulanke G and Litz J: Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol Cancer Ther. 1:913–922. 2002.PubMed/NCBI | |
Pitt S, Chen H and Kunnimalaiyaan M: Inhibition of phosphatidylinositol 3-kinase/Akt signaling suppresses tumor cell proliferation and neuroendocrine marker expression in GI carcinoid tumors. Ann Surg Oncol. 16:2936–2942. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J and Yonezawa K: Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 110:177–189. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chan J and Kulke M: Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr Treat Options Oncol. 15:365–379. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, Paez-Pereda M, Stalla GK and Theodoropoulou M: The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res. 70:666–674. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakakura EK, Sriuranpong VR, Kunnimalaiyaan M, Hsiao EC, Schuebel KE, Borges MW, Jin N, Collins BJ, Nelkin BD, Chen H and Ball DW: Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. J Clin Endocrinol Metab. 90:4350–4356. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ikeda I, Ishizaka Y, Tahira T, Suzuki T, Onda M, Sugimura T and Nagao M: Specific expression of the ret proto-oncogene in human neuroblastoma cell lines. Oncogene. 5:1291–1296. 1990.PubMed/NCBI | |
Plaza Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T, Hollema H, Burzynski GM, Gimm O, Buys CH, et al: RET-familial medullary thyroid carcinomamutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell. Cancer Res. 65:1729–1737. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bousquet C, Lasfargues C, Chalabi M, Billah SM, Susini C, Vezzosi D, Caron P and Pyronnet S: Clinical review: Current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy. J Clin Endocrinol Metab. 97:727–737. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duran I, Kortmansky J, Singh D, Hirte H, Kocha W, Goss G, Le L, Oza A, Nicklee T, Ho J, et al: A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 95:1148–1154. 2006. View Article : Google Scholar : PubMed/NCBI | |
Valentino JD, Li J, Zaytseva YY, Mustain WC, Elliott VA, Kim JT, Harris JW, Campbell K, Weiss H, Wang C, et al: Cotargeting the PI3K and RAS pathways for the treatment of neuroendocrine tumors. Clin Cancer Res. 20:1212–1222. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lankat-Buttgereit B, Horsch D, Barth P, Arnold R, Blöcker S and Göke R: Effects of the tyrosine kinase inhibitor imatinib on neuroendocrine tumor cell growth. Digestion. 71:131–140. 2005. View Article : Google Scholar : PubMed/NCBI | |
Perkins J, Boland P, Cohen SJ, Olszanski AJ, Zhou Y, Engstrom P and Astsaturov I: Successful imatinib therapy for neuroendocrine carcinoma with activating Kit mutation: A case study. J Natl Compr Canc Netw. 6:847–852. 2014. View Article : Google Scholar | |
Samlowski WE, Moon J, Tuthill RJ, Heinrich MC, Balzer-Haas NS, Merl SA, DeConti RC, Thompson JA, Witter MT, Flaherty LE and Sondak VK: A phase II trial of imatinib mesylate in merkel cell carcinoma (neuroendocrine carcinoma of the skin): A Southwest Oncology Group study (S0331). Am J Clin Oncol. 33:495–499. 2010. View Article : Google Scholar : PubMed/NCBI | |
de Groot JW, Zonnenberg BA, van Ufford-Mannesse PQ, de Vries MM, Links TP, Lips CJ and Voest EE: A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 92:3466–3469. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lawrence B, Gustafsson BI, Kidd M and Modlin I: New pharmacologic therapies for gastroenteropancreatic neuroendocrine tumors. Gastroenterol Clin North Am. 39:615–628. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fjallskog ML, Lejonklou MH, Oberg KE, Eriksson BK and Janson ET: Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res. 9:1469–1473. 2003.PubMed/NCBI | |
Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA and Chen H: Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem. 281:39819–39830. 2006. View Article : Google Scholar : PubMed/NCBI | |
Salazar R, Chris Verslype C, Baudin E, Libutti SK, Yao JC, Buzzoni R, Antonuzzo L, Hubner R, García-Carbonero R, Custodio AB, et al: Phase II studies of BEZ235 in patients with advanced pancreatic neuroendocrine tumors (pNET). J Clin Oncol. 33(15 suppl): S41022015. | |
Vandamme T, Beyens M, de Beeck KO, Dogan F, van Koetsveld PM, Pauwels P, Mortier G, Vangestel C, de Herder W, Van Camp G, et al: Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. Br J Cancer. 114:650–658. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sippel RS, Carpenter JE, Kunnimalaiyaan M and Chen H: The role of human achaete-scute homolog-1 in medullary thyroid cancer cells. Surgery. 134:866–871. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kappes A, Vaccaro A, Kunnimalaiyaan M and Chen H: ZM336372, a Raf-1 activator, inhibits growth of pheochromocytoma cells. Surg Res. 133:42–45. 2006. View Article : Google Scholar | |
Greco A, Borrello MG, Miranda C, Degl'Innocenti D and Pierotti MA: Molecular pathology of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 53:440–543. 2009.PubMed/NCBI | |
Bergers G, Javaherian K, Lo KM, Folkman J and Hanahan D: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 284:808–812. 1999. View Article : Google Scholar : PubMed/NCBI | |
Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J and Hanahan D: Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA. 93:pp. 2002–2007. 1996; View Article : Google Scholar : PubMed/NCBI | |
Yashiro T, Fulton N, Hara H, Yasuda K, Montag A, Yashiro N, Straus F II, Ito K, Aiyoshi Y and Kaplan EL: Comparison of mutations of ras oncogene in human pancreatic exocrine and endocrine tumors. Surgery. 114:758–763. 1993.PubMed/NCBI | |
Yoshimoto K, Iwahana H, Fukuda A, Sano T, Saito S and Itakura M: Role of p53 mutations in endocrine tumorigenesis: Mutation detection by polymerase chain reaction-single strand conformation polymorphism. Cancer Res. 52:5061–5064. 1992.PubMed/NCBI | |
Zhang HY, Rumilla KM, Jin L, Nakamura N, Stilling GA, Ruebel KH, Hobday TJ, Erlichman C, Erickson LA and Lloyd RV: Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine. 30:299–306. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rahman MM, Qian ZR, Wang EL, Yoshimoto K, Nakasono M, Sultana R, Yoshida T, Hayashi T, Haba R, Ishida M, et al: DNA methyltransferases 1, 3a and 3b overexpression and clinical significance in gastroenteropancreatic neuroendocrine tumors. Hum Pathol. 41:1069–1078. 2010. View Article : Google Scholar : PubMed/NCBI | |
How-Kit A, Dejeux E, Dousset B, Renault V, Baudry M, Terris B and Tost J: DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics. 7:1245–1258. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, et al: DAXX/ATRX, MEN1 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 331:1199–1203. 2001. View Article : Google Scholar | |
Feng Z, Wang L, Sun Y, Jiang Z, Domsic J, An C, Xing B, Tian J, Liu X, Metz DC, et al: Menin and Daxx interact to suppress neuroendocrine tumors through epigenetic control of the membrane metallo-endopeptidase. Cancer Res. 77:401–411. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gurung B, Feng Z, Iwamoto DV, Thiel A, Jin G, Fan CM, Ng JM, Curran T and Hua X: Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res. 73:2650–2658. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Lee JE, Cho EJ, Liu JO and Youn HD: Menin, a tumor suppressor represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res. 63:6135–6139. 2003.PubMed/NCBI | |
Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA, et al: Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell. 13:587–597. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W and Cleary ML: Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol. 24:5639–5649. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cives M, Simone V, Rizzo FM and Silvestris F: NETs: Organ-related epigenetic derangements and potential clinical applications. Oncotarget. 7:57414–57429. 2016. View Article : Google Scholar : PubMed/NCBI | |
Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM, et al: Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell. 96:143–152. 1999. View Article : Google Scholar : PubMed/NCBI | |
Agarwal SK, Kennedy PA, Scacheri PC, Novotny EA, Hickman AB, Cerrato A, Rice TS, Moore JB, Rao S, Ji Y, et al: Menin molecular interactions: Insights into normal functions and tumorigenesis. Horm Metab Res. 37:369–374. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stalberg P, Grimfjärd P, Santesson M, Zhou Y, Lindberg D, Gobl A, Oberg K, Westin G, Rastad J, Wang S, et al: Transfection of the multiple endocrine neoplasia type 1 gene to a human endocrine pancreatic tumor cell line inhibits cell growth and affects expression of JunD, delta-like protein 1/preadipocyte factor-1, proliferating cell nuclear antigen and QM/Jif-1. J Clin Endocrinol Metab. 89:2326–2337. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stefanoli M, La Rosa S, Sahnane N, Romualdi C, Pastorino R, Marando A, Capella C, Sessa F and Furlan D: Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology. 100:26–34. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Cuesta L, Peifer M, Lu X, Sun R, Ozretić L, Seidal D, Zander T, Leenders F, George J, Müller C, et al: Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun. 5:35182014. View Article : Google Scholar : PubMed/NCBI | |
Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, et al: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 543:65–71. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boora GK, Kanwar R, Kulkarni AA, Pleticha J, Ames M, Schroth G, Beutler AS and Banck MS: Exome-level comparison of primary well-differentiated neuroendocrine tumors and their cell lines. Cancer Genet. 208:374–381. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim JT, Li J, Jang ER, Gulhati P, Rychahou PG, Napier DL, Wang C, Weiss HL, Lee EY, Anthony L, et al: Deregulation of Wnt/β-catenin signaling through genetic or epigenetic alterations in human neuroendocrine tumors. Carcinogenesis. 34:953–961. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A and Croce CM: MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 24:4677–4684. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ruebel K, Leontovich AA, Stilling GA, Zhang S, Righi A, Jin L and Lloyd RV: MicroRNA expression in ileal carcinoid tumors: Downregulation of microRNA-133a with tumor progression. Mod Pathol. 23:367–375. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li SC, Essaghir A, Martijn C, Lloyd RV, Demoulin JB, Oberg K and Giandomenico V: Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol. 26:685–696. 2013. View Article : Google Scholar : PubMed/NCBI | |
Døssing KB, Binderup T, Kaczkowski B, Jacobsen A, Rossing M, Winther O, Federspiel B, Knigge U, Kjær A and Friis-Hansen L: Down-regulation of miR-129-5p and the let-7 family in neuroendocrine tumors and metastases leads to up-regulation of their targets Egr1 G3bp1 Hmga2 and Bach1. Genes (Basel). 6:1–21. 2014. View Article : Google Scholar : PubMed/NCBI | |
Louwerens JK, Schaberg A and Bosman FT: Neuroendocrine cells in cystic mucinous tumours of the ovary. Histopathology. 7:389–398. 1983. View Article : Google Scholar : PubMed/NCBI | |
Pagani A, Macrí L, Rosolen A, Toffolatti L, Stella A and Bussolati G: Neuroendocrine differentiation in Ewing's sarcomas and primitive neuroectodermal tumors revealed by reverse transcriptase-polymerase chain reaction of chromogranin mRNA. Nucl Med Mol Imaging. 7:36–43. 1998. | |
Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, et al: Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 364:501–513. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mohamed A, Romano D, Saveanu A, Roche C, Albertelli M, Barbieri F, Brue T, Niccoli P, Delpero JR, Garcia S, et al: Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroendocrine tumors primary cultures: Is there any benefit from combination with somatostatin analogs? Oncotarget. 8:41044–41063. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zitzmann K, Rüden Jv, Brand S, Göke B, Lichtl J, Spöttl G and Auernhammer CJ: Compensatory activation of Akt in response to mTOR and Raf inhibitors-a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Lett. 295:100–109. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W, Beijersbergen RL, Valero V, Seoane J, Bernards R, et al: Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68:9221–9230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fisseler-Eckhoff A and Demes M: Neuroendocrine tumors of the lung cancers. Cancers Basel. 4:777–798. 2012. View Article : Google Scholar : PubMed/NCBI | |
Banerjee J, Papu John AM and Schuller HM: Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides. Int J Cancer. 137:2815–2824. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Wu JB and Yi FM: Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer. Mol Med Rep. 13:3531–3536. 2015. View Article : Google Scholar | |
Jaffee IM, Rahmani M, Singhal MG and Younes M: Expression of the intestinal transcription factor CDX2 in carcinoid tumors is a marker of midgut origin. Arch Pathol Lab Med. 130:1522–1526. 2006.PubMed/NCBI | |
Pelosi G, Bresaola E, Bogina G, Pasini F, Rodella S, Castelli P, Iacono C, Serio G and Zamboni G: Endocrine tumors of the pancreas: Ki-67 immunoreactivity on paraffin sections is an independent predictor for malignancy: A comparative study with proliferating-cell nuclear antigen and progesterone receptor protein immunostaining, mitotic index and other clinicopathologic variables. Hum Pathol. 27:1124–1134. 1996. View Article : Google Scholar : PubMed/NCBI | |
Clarke MR, Baker EE, Weyant RJ, Hill L and Carty SE: Proliferative activity in pancreatic endocrine tumors: Association with function, metastases and survival. Endocr Pathol. 8:181–187. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ekeblad S, Skogseid B, Dunder K, Oberg K and Eriksson B: Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res. 14:7798–7803. 2008. View Article : Google Scholar : PubMed/NCBI | |
Le Roith D, Shiloach J, Roth J and Lesniak MA: Evolutionary origins of vertebrate hormones: Substances similar to mammalian insulins are native to unicellular eukaryotes. Proc Natl Acad Sci USA. 77:pp. 6184–6188. View Article : Google Scholar : PubMed/NCBI | |
Granberg D, Wilander E, Oberg K and Skogseid B: Prognostic markers in patients with typical bronchial carcinoid tumors. J Clin Endocrinol Metab. 85:3425–3430. 2000. View Article : Google Scholar : PubMed/NCBI | |
Diebold AE, Boudreaux JP, Wang YZ, Anthony LB, Uhlhorn AP, Ryan P, Mamikunian P, Mamikunian G and Woltering EA: Neurokinin A levels predict survival in patients with stage IV well differentiated small bowel neuroendocrine neoplasms. Surgery. 152:1172–1176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Detjen KM, Rieke S, Deters A, Schulz P, Rexin A, Vollmer S, Hauff P, Wiedenmann B, Pavel M and Scholz A: Angiopoietin-2 promotes disease progression of neuroendocrine tumors. Clin Cancer Res. 16:420–429. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vinik AI, Anthony L, Boudreaux JP, Go VL, O'Dorisio TM, Ruszniewski P and Woltering EA: Neuroendocrine tumors: A critical appraisal of management strategies. Pancreas. 39:801–818. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kvols LK and Woltering EA: Role of somatostatin analogs in the clinical management of non-neuroendocrine solid tumors. Anticancer Drugs. 17:601–608. 2006. View Article : Google Scholar : PubMed/NCBI | |
Narayanan S and Kunz P: Role of somatostatin analogues in the treatment of neuroendocrine tumors. J Natl Compr Canc Netw. 13:109–117. 2015. View Article : Google Scholar : PubMed/NCBI |