1
|
Reck M, Heigener DF, Mok T, Soria JC and
Rabe KF: Management of non-small-cell lung cancer: Recent
developments. Lancet. 382:709–719. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Grunnet M and Sorensen JB:
Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung
Cancer. 76:138–143. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lozano R, Naghavi M, Foreman K, Lim S,
Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et
al: Global and regional mortality from 235 causes of death for 20
age groups in 1990 and 2010: A systematic analysis for the Global
Burden of disease study 2010. Lancet. 380:2095–2128. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang Y, Chen J, Wu S, Hu C, Li X, Wang Y,
Yang Y, Rajan N, Chen Y, Chen Y, et al: Clinical effectiveness and
clinical toxicity associated with platinum-based doublets in the
first-line setting for advanced non-squamous non-small cell lung
cancer in Chinese patients: A retrospective cohort study. BMC
Cancer. 14:9402014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cooper WA, Lam DC, O'Toole SA and Minna
JD: Molecular biology of lung cancer. Lung Cancer. 42:378–386.
2004.
|
6
|
Weigel D and Jäckle H: The fork head
domain: A novel DNA binding motif of eukaryotic transcription
factors? Cell. 63:455–456. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sutton J, Costa R, Klug M, Field L, Xu D,
Largaespada DA, Fletcher CF, Jenkins NA, Copeland NG, Klemsz M and
Hromas R: Genesis, a winged helix transcriptional repressor with
expression restricted to embryonic stem cells. J Biol Chem.
271:23126–23133. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yan JH, Zhao CL, Ding LB and Zhou X: FOXD3
suppresses tumor growth and angiogenesis in non-small cell lung
cancer. Biochem Biophys Res Commun. 466:111–116. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cheng AS, Li MS, Kang W, Cheng VY, Chou
JL, Lau SS, Go MY, Lee CC, Ling TK, Ng EK, et al: Helicobacter
pylori causes epigenetic dysregulation of FOXD3 to promote gastric
carcinogenesis. Gastroenterology. 144:122–133.e9. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Abel EV and Aplin AE: FOXD3 is a mutant
B-RAF-regulated inhibitor of G(1)-S progression in melanoma cells.
Cancer Res. 70:2891–2900. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Katiyar P and Aplin AE: FOXD3 regulates
migration properties and Rnd3 expression in melanoma cells. Mol
Cancer Res. 9:545–552. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li D, Mei H, Qi M, Yang D, Zhao X, Xiang
X, Pu J, Huang K, Zheng L and Tong Q: FOXD3 is a novel tumor
suppressor that affects growth, invasion, metastasis and
angiogenesis of neuroblastoma. Oncotarget. 4:2021–2044. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim D, Pertea G, Trapnell C, Pimentel H,
Kelley R and Salzberg SL: TopHat2: Accurate alignment of
transcriptomes in the presence of insertions, deletions and gene
fusions. Genome Biol. 14:R362013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Anders S, Pyl PT and Huber W: HTSeq-a
Python framework to work with high-throughput sequencing data.
Bioinformatics. 31:166–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Culpepper SA and Aguinis HR: Is for
Revolution: A Cutting-Edge, free, open source statistical package.
Organizational Res Methods. 13:735–740. 2011. View Article : Google Scholar
|
16
|
Warnes GR, Bolker B, Bonebakker L, et al:
Gplots: Various R programming tools for plotting data. R package
version 2.12. 1. http://CRAN.R-project.org/package=gplots
|
17
|
Shen S, Park JW, Lu ZX, Lin L, Henry MD,
Wu YN, Zhou Q and Xing Y: rMATS: Robust and flexible detection of
differential alternative splicing from replicate RNA-Seq data. Proc
Natl Acad Sci USA. 111:pp. E5593–E5601. 2014; View Article : Google Scholar : PubMed/NCBI
|
18
|
Dennis G Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for Annotation,
Visualization, and Integrated Discovery. Genome Biol. 4:P32003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Szklarczyk D, Franceschini A, Kuhn M,
Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork
P, et al: The STRING database in 2011: Functional interaction
networks of proteins, globally integrated and scored. Nucleic Acids
Res. 39(Database issue): D561–D568. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Franceschini A, Szklarczyk D, Frankild S,
Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C
and Jensen LJ: STRING v9.1: Protein-protein interaction networks,
with increased coverage and integration. Nucleic Acids Res.
41(Database issue): D808–D815. 2013.PubMed/NCBI
|
21
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang P: Epidemiology of lung cancer
prognosis: Quantity and quality of life. Methods Mol Biol.
471:469–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Schäfer M and Werner S: Cancer as an
overhealing wound: An old hypothesis revisited. Nat Rev Mol Cell
Biol. 9:628–638. 2008. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Troester MA, Lee MM, Carter M, Fan C,
Cowan DW, Perez ER, Pirone JR, Perou CM, Jerry DJ and Schneider SS:
Activation of host wound responses in breast cancer
microenvironment. Clin Cancer Res. 15:7020–7028. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chang HY, Nuyten DS, Sneddon JB, Hastie T,
Tibshirani R, Sørlie T, Dai H, He YD, van't Veer LJ, Bartelink H,
et al: Robustness, scalability, and integration of a wound-response
gene expression signature in predicting breast cancer survival.
Proc Natl Acad Sci USA. 102:pp. 3738–3743. 2005; View Article : Google Scholar : PubMed/NCBI
|
27
|
Singleton P: Bacteria in Biology,
Biotechnology, and Medicine. 5th. John Wiley; Hoboken, NJ: pp.
444–454. 1999
|
28
|
Sok M, Sentjurc M, Schara M, Stare J and
Rott T: Cell membrane fluidity and prognosis of lung cancer. Ann
Thorac Surg. 73:1567–1571. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nakazawa I and Iwaizumi M: A role of the
cancer cell membrane fluidity in the cancer metastases: An ESR
study. Tohoku J Exp Med. 157:193–198. 1989. View Article : Google Scholar : PubMed/NCBI
|
30
|
Deliconstantinos G: Physiological aspects
of membrane lipid fluidity in malignancy. Anticancer Res.
7:1011–1021. 1987.PubMed/NCBI
|
31
|
Nakazawa I and Iwaizumi M: A role of the
cancer cell membrane fluidity in the cancer metastases: Aan ESR
study. Tohoku J Exp Med. 157:193–198. 1989. View Article : Google Scholar : PubMed/NCBI
|
32
|
Winey M, Mamay CL, O'Toole ET, Mastronarde
DN, Giddings TH Jr, McDonald KL and McIntosh JR: Three-dimensional
ultrastructural analysis of the Saccharomyces cerevisiae mitotic
spindle. J Cell Biol. 129:1601–1615. 1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jana SS, Kawamoto S and Adelstein RS: A
specific isoform of nonmuscle myosin II-C is required for
cytokinesis in a tumor cell line. J Biol Chem. 281:24662–24670.
2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Weisiger RA: Cytosolic fatty acid binding
proteins catalyze two distinct steps in intracellular transport of
their ligands. Mol Cell Biochem. 239:35–43. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li XB, Gu JD and Zhou QH: Review of
aerobic glycolysis and its key enzymes-new targets for lung cancer
therapy. Thoracic Cancer. 6:17–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jingye Z, Zining L, Peng L, Jun Q, Xinwei
L, Lu W, Wei F, Liang C, Xunbin W and Cong L: Selective imaging and
cancer cell death via pH switchable near-infrared fluorescence and
photothermal effects. Chem Sci. 7:5995–6005. 2016. View Article : Google Scholar
|
37
|
Ackermann S, Kocak H, Hero B, Ehemann V,
Kahlert Y, Oberthuer A, Roels F, Theißen J, Odenthal M, Berthold F
and Fischer M: FOXP1 inhibits cell growth and attenuates
tumorigenicity of neuroblastoma. Bmc Cancer. 14:8402014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kos R, Reedy MV, Johnson RL and Erickson
CA: The winged-helix transcription factor FoxD3 is important for
establishing the neural crest lineage and repressing melanogenesis
in avian embryos. Development. 128:1467–1479. 2001.PubMed/NCBI
|
39
|
Wang C, Huang Y and Dai W: Tumor
suppression function of FoxD3 in lung cancer. Ir J Med Sci.
185:547–553. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pópulo H, Lopes JM and Soares P: The mTOR
signalling pathway in human cancer. Int J Mol Sci. 13:1886–1918.
2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Castaño-Rodríguez N, Kaakoush NO, Goh KL,
Fock KM and Mitchell HM: The NOD-like receptor signalling pathway
in Helicobacter pylori infection and related gastric cancer: A
case-control study and gene expression analyses. PLoS One.
9:e988992014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lens SM, Voest EE and Medema RH: Shared
and separate functions of polo-like kinases and aurora kinases in
cancer. Nat Rev Cancer. 10:825–841. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ma ZL, Zhang BJ, Wang DT, Li X, Wei JL,
Zhao BT, Jin Y, Li YL and Jin YX: Tanshinones suppress AURKA
through up-regulation of miR-32 expression in non-small cell lung
cancer. Oncotarget. 6:20111–20120. 2015.PubMed/NCBI
|
44
|
Xu W, Charles IG, Moncada S, Gorman P,
Sheer D, Liu L and Emson P: Mapping of the genes encoding human
inducible and endothelial nitric oxide synthase (NOS2 and NOS3) to
the pericentric region of chromosome 17 and to chromosome 7,
respectively. Genomics. 21:419–422. 1994. View Article : Google Scholar : PubMed/NCBI
|
45
|
Arıkan S, Cacina C, Guler E, Çulcu S, Tuna
G and Yaylımeraltan I: The effects of NOS3 Glu298Asp variant on
colorectal cancer risk and progression in Turkish population. Mol
Biol Rep. 39:3245–3249. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lee KM, Choi JY, Lee JE, Noh DY, Ahn SH,
Han W, Yoo KY, Hayes RB and Kang D: Genetic polymorphisms of NOS3
are associated with the risk of invasive breast cancer with lymph
node involvement. Breast Cancer Res Treat. 106:433–438. 2007.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang JH, Chen LB, Heng-Hui MA and Meng K:
Expressions of NOS2 and NOS3 in human non-small cell lung cancer
and the relationship with tumor angiogenesis and lymph node
metastasis. J Med Postgraduates. 2004.
|
48
|
Stahl JM, Sharma A, Cheung M, Zimmerman M,
Cheng JQ, Bosenberg MW, Kester M, Sandirasegarane L and Robertson
GP: Deregulated Akt3 activity promotes development of malignant
melanoma. Cancer Res. 64:7002–7010. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Terasaka Y, Miyazaki D, Yakura K, Haruki T
and Inoue Y: Induction of IL-6 in transcriptional networks in
corneal epithelial cells after herpes simplex virus type 1
infection. Invest Ophthalmol Vis Sci. 51:2441–2449. 2010.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Balamuth NJ, Wood A, Wang Q, Jagannathan
J, Mayes P, Zhang Z, Chen Z, Rappaport E, Courtright J, Pawel B, et
al: Serial transcriptome analysis and cross-species integration
identifies centromere-associated protein E as a novel neuroblastoma
target. Cancer Res. 70:2749–2758. 2010. View Article : Google Scholar : PubMed/NCBI
|
51
|
Weiss MB, Abel EV, Dadpey N and Aplin AE:
FOXD3 modulates migration through direct transcriptional repression
of TWIST1 in melanoma. Mol Cancer Res. 12:1314–1323. 2014.
View Article : Google Scholar : PubMed/NCBI
|