Therapeutic targeting of noncoding RNAs in hepatocellular carcinoma: Recent progress and future prospects (Review)
- Authors:
- Zhangang Xiao
- Jing Shen
- Lin Zhang
- Mingxing Li
- Wei Hu
- Chihin Cho
-
Affiliations: Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China - Published online on: January 9, 2018 https://doi.org/10.3892/ol.2018.7758
- Pages: 3395-3402
-
Copyright: © Xiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
International Human Genome Sequencing Consortium, . Finishing the euchromatic sequence of the human genome. Nature. 431:931–945. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, et al: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 302:842–846. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pennisi E: Shining a light on the genome's ‘dark matter’. Science. 330:16142010. View Article : Google Scholar : PubMed/NCBI | |
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Miska EA: How microRNAs control cell division, differentiation and death. Curr Opin Genet Devel. 15:563–568. 2005. View Article : Google Scholar | |
Nagano T and Fraser P: No-nonsense functions for long noncoding RNAs. Cell. 145:178–181. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rinn JL and Chang HY: Genome regulation by long noncoding RNAs. Ann Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khanduja JS, Calvo IA, Joh RI, Hill IT and Motamedi M: Nuclear noncoding RNAs and genome stability. Mol Cell. 63:7–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hannon GJ, Rivas FV, Murchison EP and Steitz JA: The expanding universe of noncoding RNAs. Cold Spring Harb Symp Quant Biol. 71:551–564. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Yan I, Haga H and Patel T: Long noncoding RNA in liver diseases. Hepatology. 60:744–753. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al: lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 477:295–300. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tao H, Yang JJ and Shi KH: Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets. 19:707–716. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu XD: Non-coding RNA: A new frontier in regulatory biology. Nat Sci Rev. 1:190–204. 2014. View Article : Google Scholar | |
Liao B, Chen R, Lin F, Mai A, Chen J, Li H, Xu Z and Dong S: Long noncoding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/beta-catenin pathway. J Cell Biochem. 2017. | |
Peng JF, Zhuang YY, Huang FT and Zhang SN: Noncoding RNAs and pancreatic cancer. World J Gastroenterol. 22:801–814. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang M and Du X: Noncoding RNAs in gastric cancer: Research progress and prospects. World J Gastroenterol. 22:6610–6618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Adams BD, Parsons C, Walker L, Zhang WC and Slack FJ: Targeting noncoding RNAs in disease. J Clin Invest. 127:761–771. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI | |
Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, et al: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 134:521–533. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shivdasani RA: MicroRNAs: Regulators of gene expression and cell differentiation. Blood. 108:3646–3653. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu SY, Lan SH and Liu HS: Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol. 22:176–187. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yu J, Wong CC, Ling TK, Li ZJ, Chan KM, Ren SX, Shen J, Chan RL, Lee CC, et al: Cathelicidin protects against Helicobacter pylori colonization and the associated gastritis in mice. Gene Ther. 20:751–760. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, et al: MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 122:2884–2897. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, Jiang JD, Sung JJ, Cheng CH and Chen Y: A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res. 74:6236–6247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, et al: Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 19:232–243. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, Xu D, Bi HS, Wang F and Sun SH: Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 34:577–586. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trebinjac S, Radulović R and Buljina A: Prevalence of gonarthrosis and the duration of rehabilitation. Med Arh. 43:179–182. 1989.(In Croatian). PubMed/NCBI | |
Wang C, Ren R, Hu H, Tan C, Han M, Wang X and Zheng Y: MiR-182 is up-regulated and targeting Cebpa in hepatocellular carcinoma. Chin J Cancer Res. 26:17–29. 2014.PubMed/NCBI | |
Park JK, Kogure T, Nuovo GJ, Jiang J, He L, Kim JH, Phelps MA, Papenfuss TL, Croce CM, Patel T and Schmittgen TD: miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 71:7608–7616. 2011. View Article : Google Scholar : PubMed/NCBI | |
Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T and Shimotohno K: Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 25:2537–2545. 2006. View Article : Google Scholar : PubMed/NCBI | |
Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, et al: Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology. 47:897–907. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S and Zucman-Rossi J: MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 47:1955–1963. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Huang J, Ma L, Shan J, Shen J, Yang Z, Liu L, Luo Y, Yao C and Qian C: MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett. 371:171–181. 2016. View Article : Google Scholar : PubMed/NCBI | |
Afonso MB, Rodrigues PM, Simao AL and Castro RE: Circulating microRNAs as potential biomarkers in non-alcoholic fatty liver disease and hepatocellular carcinoma. J Clin Med. 5:E302016. View Article : Google Scholar : PubMed/NCBI | |
Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, Kang C and Zhang Q: DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 359:198–205. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, Tian Z and Zhang C: Histone deacetylase inhibitor SAHA epigenetically regulates miR-17-92 cluster and MCM7 to upregulate MICA expression in hepatoma. Br J Cancer. 112:112–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang PP, Wang XL, Zhao W, Qi B, Yang Q, Wan HY, Shuang ZY, Liu M, Li X, Li S and Tang H: DNA methylation-mediated repression of miR-941 enhances lysine (K)-specific demethylase 6B expression in hepatoma cells. J Biol Chem. 289:24724–24735. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Xu D, Bao C, Zhang Y, Chen D, Zhao F, Ding J, Liang L, Wang Q, Liu L, et al: MicroRNA-135b, a HSF1 target, promotes tumor invasion and metastasis by regulating RECK and EVI5 in hepatocellular carcinoma. Oncotarget. 6:2421–2433. 2015.PubMed/NCBI | |
Liu LL, Lu SX, Li M, Li LZ, Fu J, Hu W, Yang YZ, Luo RZ, Zhang CZ and Yun JP: FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget. 5:5113–5124. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kojima T: Kanagawa prefectural institute of public health. Chudoku Kenkyu. 22:266–269. 2009.(In Japanese). PubMed/NCBI | |
Pantano L, Jodar M, Bak M, Ballescà JL, Tommerup N, Oliva R and Vavouri T: The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes. RNA. 21:1085–1095. 2015. View Article : Google Scholar : PubMed/NCBI | |
Girard A, Sachidanandam R, Hannon GJ and Carmell MA: A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 442:199–202. 2006.PubMed/NCBI | |
Grivna ST, Beyret E, Wang Z and Lin H: A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20:1709–1714. 2006. View Article : Google Scholar : PubMed/NCBI | |
Czech B and Hannon GJ: One loop to rule them all: The Ping-Pong cycle and piRNA-guided silencing. Trends Biochem Sci. 41:324–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, et al: Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 137:509–521. 2009. View Article : Google Scholar : PubMed/NCBI | |
De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ and O'Carroll D: The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature. 480:259–263. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R and Pillai RS: Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 480:264–267. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Yoshikawa M, Han BW, Izumi N, Tomari Y, Weng Z and Zamore PD: The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. Mol Cell. 56:708–716. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pezic D, Manakov SA, Sachidanandam R and Aravin AA: piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 28:1410–1428. 2014. View Article : Google Scholar : PubMed/NCBI | |
Itou D, Shiromoto Y, Yukiho SY, Ishii C, Nishimura T, Ogonuki N, Ogura A, Hasuwa H, Fujihara Y, Kuramochi-Miyagawa S and Nakano T: Induction of DNA methylation by artificial piRNA production in male germ cells. Current Biol. 25:901–906. 2015. View Article : Google Scholar | |
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang L, Chen L, Chu ZB, Tang B, Wang K, et al: piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia. 29:196–206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KS, Saprunoff HL, Lam WL and Martinez VD: Piwi-interacting RNAs in cancer: Emerging functions and clinical utility. Mol Cancer. 15:52016. View Article : Google Scholar : PubMed/NCBI | |
Juliano C, Wang J and Lin H: Uniting germline and stem cells: The function of Piwi proteins and the piRNA pathway in diverse organisms. Ann Rev Genet. 45:447–469. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moyano M and Stefani G: piRNA involvement in genome stability and human cancer. J Hematol Oncol. 8:382015. View Article : Google Scholar : PubMed/NCBI | |
Assumpção CB, Calcagno DQ, Araújo TM, Santos SE, Santos ÂK, Riggins GJ, Burbano RR and Assumpção PP: The role of piRNA and its potential clinical implications in cancer. Epigenomics. 7:975–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kwon C, Tak H, Rho M, Chang HR, Kim YH, Kim KT, Balch C, Lee EK and Nam S: Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun. 446:218–223. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu J and Xu G: Overexpression of PIWI proteins in human stage III epithelial ovarian cancer with lymph node metastasis. Cancer Biomark. 13:315–321. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao YM, Zhou JM, Wang LR, He HW, Wang XL, Tao ZH, Sun HC, Wu WZ, Fan J, Tang ZY and Wang L: HIWI is associated with prognosis in patients with hepatocellular carcinoma after curative resection. Cancer. 118:2708–2717. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Yang Y, Ji D, Zhang D, Yao X and Zhang X: Hiwi downregulation, mediated by shRNA, reduces the proliferation and migration of human hepatocellular carcinoma cells. Mol Med Rep. 11:1455–1461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Keam SP, Young PE, McCorkindale AL, Dang TH, Clancy JL, Humphreys DT, Preiss T, Hutvagner G, Martin DI, Cropley JE and Suter CM: The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells. Nucleic Acids Res. 42:8984–8995. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hashim A, Rizzo F, Marchese G, Ravo M, Tarallo R, Nassa G, Giurato G, Santamaria G, Cordella A, Cantarella C and Weisz A: RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget. 5:9901–9910. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Li C, Zhang K, Sun H, Tao D, Liu Y, Zhang S and Ma Y: Identification of piRNAs in Hela cells by massive parallel sequencing. BMB Rep. 43:635–641. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z and Guo J: piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett. 315:12–17. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Hu H, Xue X, Shen S, Gao E, Guo G, Shen X and Zhang X: Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Trans Oncol. 15:563–568. 2013. View Article : Google Scholar | |
Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H and Li QN: piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta. 412:1621–1625. 2011. View Article : Google Scholar : PubMed/NCBI | |
Law PT, Qin H, Ching AK, Lai KP, Co NN, He M, Lung RW, Chan AW, Chan TF and Wong N: Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol. 58:1165–1173. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M, Zhong D, Ma L, Tong N, Qin C, et al: Identification of novel piRNAs in bladder cancer. Cancer Lett. 356:561–567. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX and Guo JM: Non-coding RNAs and gastric cancer. World J Gastroenterol. 20:5411–5419. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Ren Y, Xu H, Pang D, Duan C and Liu C: The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol. 22:217–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI | |
Young DD, Connelly CM, Grohmann C and Deiters A: Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc. 132:7976–7981. 2010. View Article : Google Scholar : PubMed/NCBI | |
Childs-Disney JL and Disney MD: Small molecule targeting of a MicroRNA associated with hepatocellular carcinoma. ACS Chem Biol. 11:375–380. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lamb J: The Connectivity Map: A new tool for biomedical research. Nat Rev Cancer. 7:54–60. 2007. View Article : Google Scholar : PubMed/NCBI | |
Toyoshiba H, Sawada H, Naeshiro I and Horinouchi A: Similar compounds searching system by using the gene expression microarray database. Toxicol Lett. 186:52–57. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Chang RM, Yu L, Lei X, Xiao S, Yang H and Yang LY: MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma. J Hepatol. 63:874–885. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Ching Chow S, Han Li C, Chun Tang S, Tsui SK, Lin Z and Chen Y: Role of microRNA-95 in the anticancer activity of Brucein D in hepatocellular carcinoma. Eur J Pharmacol. 728:141–150. 2014. View Article : Google Scholar : PubMed/NCBI | |
Esposito T, Magliocca S, Formicola D and Gianfrancesco F: piR_015520 belongs to Piwi-associated RNAs regulates expression of the human melatonin receptor 1A gene. PLoS One. 6:e227272011. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wu Z, Fu X and Han W: lncRNAs: Insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res. 762:1–21. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bonasio R, Tu S and Reinberg D: Molecular signals of epigenetic states. Science. 330:612–616. 2010. View Article : Google Scholar : PubMed/NCBI | |
Delihas N: Complexity of a small non-protein coding sequence in chromosomal region 22q11.2: Presence of specialized DNA secondary structures and RNA exon/intron motifs. BMC Genomics. 16:7852015. View Article : Google Scholar : PubMed/NCBI | |
Jenkins AM, Waterhouse RM and Muskavitch MA: Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genomics. 16:3372015. View Article : Google Scholar : PubMed/NCBI | |
Dhamija S and Diederichs S: From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer. 139:269–280. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Song JH, Cheng Y, Abraham JM, Ibrahim S, Sun Z, Ke X and Meltzer SJ: Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene. 35:4927–4936. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zequn N, Xuemei Z, Wei L, Zongjuan M, Yujie Z, Yanli H, Yuping Z, Xia M, Wei W, Wenjing D, et al: The role and potential mechanisms of LncRNA-TATDN1 on metastasis and invasion of non-small cell lung cancer. Oncotarget. 7:18219–18228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, Huang R, Yan J and Guo H: TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 5:119242015. View Article : Google Scholar : PubMed/NCBI | |
Liu YR, Tang RX, Huang WT, Ren FH, He RQ, Yang LH, Luo DZ, Dang YW and Chen G: Long noncoding RNAs in hepatocellular carcinoma: Novel insights into their mechanism. World J Hepatol. 7:2781–2791. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Xie X, Xiao YF, Xie R, Hu CJ, Tang B, Li BS and Yang SM: The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma. Cancer Lett. 360:119–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shibata C, Otsuka M, Kishikawa T, Ohno M, Yoshikawa T, Takata A and Koike K: Diagnostic and therapeutic application of noncoding RNAs for hepatocellular carcinoma. World J Hepatol. 7:1–6. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang JL, Zheng L, Hu YW and Wang Q: Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis. 35:507–514. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Zhuo H, Zhang X, Jiang R, Ji J, Deng L, Qian X, Zhang F and Sun B: A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death Dis. 5:e15492014. View Article : Google Scholar : PubMed/NCBI | |
Xu WH, Zhang JB, Dang Z, Li X, Zhou T, Liu J, Wang DS, Song WJ and Dou KF: Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci. 10:664–676. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shonkoff JP: Building a new biodevelopmental framework to guide the future of early childhood policy. Child Dev. 81:357–367. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Yang S, Yang Y, Yuan SX, Wu FQ, Wang LL, Yan HL, Sun SH and Zhou WP: Epigenetically silenced long noncoding-SRHC promotes proliferation of hepatocellular carcinoma. J Cancer Res Clin Oncol. 141:1195–1203. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Qiao Y, Tang X, Ma L, Wang Y, Zhang X, Weng W, Pan Q, Yu Y, Sun F and Wang J: Tumor suppressor long non-coding RNA MT1DP is negatively regulated by YAP and Runx2 to inhibit FoxA1 in liver cancer cells. Cell Signal. 26:2961–2968. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li C, Chen J, Zhang K, Feng B, Wang R and Chen L: Progress and prospects of long noncoding RNAs (lncRNAs) in hepatocellular carcinoma. Cell Physiol Biochem. 36:423–434. 2015. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y, Ye L and Zhang X: Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem. 287:26302–26311. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin R, Roychowdhury-Saha M, Black C, Watt AT, Marcusson EG, Freier SM and Edgington TS: Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett. 585:671–676. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ghosh MK, Patra F, Ghosh S, Hossain CM and Mukherjee B: Antisense oligonucleotides directed against insulin-like growth factor-II messenger ribonucleic acids delay the progress of rat hepatocarcinogenesis. J Carcinog. 13:22014. View Article : Google Scholar : PubMed/NCBI | |
Tedeschi L, Lande C, Cecchettini A and Citti L: Hammerhead ribozymes in therapeutic target discovery and validation. Drug Discov Today. 14:776–783. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pavco PA, Bouhana KS, Gallegos AM, Agrawal A, Blanchard KS, Grimm SL, Jensen KL, Andrews LE, Wincott FE, Pitot PA, et al: Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin Cancer Res. 6:2094–2103. 2000.PubMed/NCBI | |
Darfeuille F, Reigadas S, Hansen JB, Orum H, Di Primo C and Toulmé JJ: Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. Biochemistry. 45:12076–12082. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kolb G, Reigadas S, Castanotto D, Faure A, Ventura M, Rossi JJ and Toulmé JJ: Endogenous expression of an anti-TAR aptamer reduces HIV-1 replication. RNA Biol. 3:150–156. 2006. View Article : Google Scholar : PubMed/NCBI | |
Watrin M, Von Pelchrzim F, Dausse E, Schroeder R and Toulme JJ: In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1. Biochemistry. 48:6278–6284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pushechnikov A, Lee MM, Childs-Disney JL, Sobczak K, French JM, Thornton CA and Disney MD: Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: Application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. J Am Chem Soc. 131:9767–9779. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT and Thornton CA: Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science. 325:336–339. 2009. View Article : Google Scholar : PubMed/NCBI | |
Parsons J, Castaldi MP, Dutta S, Dibrov SM, Wyles DL and Hermann T: Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat Chem Biol. 5:823–825. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pedram Fatemi R, Salah-Uddin S, Modarresi F, Khoury N, Wahlestedt C and Faghihi MA: Screening for small-molecule modulators of long noncoding RNA-protein interactions using alphascreen. J Biomol Screen. 20:1132–1141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, De Greve J, Douillard JY, Lathia C, Schwartz B, et al: Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 24:4293–4300. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ben Mousa A: Sorafenib in the treatment of advanced hepatocellular carcinoma. Saudi J Gastroenterol. 14:40–42. 2008. View Article : Google Scholar : PubMed/NCBI | |
Waller LP, Deshpande V and Pyrsopoulos N: Hepatocellular carcinoma: A comprehensive review. World J Hepatol. 7:2648–2663. 2015. View Article : Google Scholar : PubMed/NCBI | |
George J and Patel T: Noncoding RNA as therapeutic targets for hepatocellular carcinoma. Semin Liver Dis. 35:63–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Wu WK, Ren SX, Zhang L, Chan RL, Wong CC, Lu L and Cho CH: miRNAs in gastrointestinal and liver cancers: Their perspectives and clinical applications. Curr Pharm Des. 19:1301–1310. 2013. View Article : Google Scholar : PubMed/NCBI | |
Movahedi F, Hu RG, Becker DL and Xu C: Stimuli-responsive liposomes for the delivery of nucleic acid therapeutics. Nanomedicine. 11:1575–1584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hoelder S, Clarke PA and Workman P: Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol Oncol. 6:155–176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kuentz MT and Arnold Y: Influence of molecular properties on oral bioavailability of lipophilic drugs-mapping of bulkiness and different measures of polarity. Pharm Dev Technol. 14:312–320. 2009. View Article : Google Scholar : PubMed/NCBI |