1
|
Hershko A and Ciechanover A: The ubiquitin
system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Varshavsky A: The ubiquitin system, an
immense realm. Annu Rev Biochem. 81:167–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bett JS: Proteostasis regulation by the
ubiquitin system. Essays Biochem. 60:143–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ciechanover A, Orian A and Schwartz AL:
Ubiquitin-mediated proteolysis: Biological regulation via
destruction. Bioessays. 22:442–451. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Smalle J and Vierstra RD: The ubiquitin
26S proteasome proteolytic pathway. Annu Rev Plant Biol.
55:555–590. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li W, Bengtson MH, Ulbrich A, Matsuda A,
Reddy VA, Orth A, Chanda SK, Batalov S and Joazeiro CA: Genome-wide
and functional annotation of human E3 ubiquitin ligases identifies
MULAN, a mitochondrial E3 that regulates the organelle's dynamics
and signaling. PLoS One. 3:e14872008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Deshaies RJ and Joazeiro CA: RING domain
E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bai C, Sen P, Hofmann K, Ma L, Goebl M,
Harper JW and Elledge SJ: SKP1 connects cell cycle regulators to
the ubiquitin proteolysis machinery through a novel motif, the
F-box. Cell. 86:263–274. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Frescas D and Pagano M: Deregulated
proteolysis by the F-box proteins SKP2 and beta-TrCP: Tipping the
scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang Z, Liu P, Inuzuka H and Wei W: Roles
of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Gong J, Lv L and Huo J: Roles of F-box
proteins in human digestive system tumors (Review). Int J Oncol.
45:2199–2207. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zheng N, Zhou Q, Wang Z and Wei W: Recent
advances in SCF ubiquitin ligase complex: Clinical implications.
Biochim Biophys Acta. 1866:12–22. 2016.PubMed/NCBI
|
13
|
Cenciarelli C, Chiaur DS, Guardavaccaro D,
Parks W, Vidal M and Pagano M: Identification of a family of human
F-box proteins. Curr Biol. 9:1177–1179. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin J, Cardozo T, Lovering RC, Elledge SJ,
Pagano M and Harper JW: Systematic analysis and nomenclature of
mammalian F-box proteins. Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Winston JT, Koepp DM, Zhu C, Elledge SJ
and Harper JW: A family of mammalian F-box proteins. Curr Biol.
9:1180–1182. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Diaz VM and de Herreros AG: F-box
proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in
check. Semin Cancer Biol. 36:71–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Heo J, Eki R and Abbas T: Deregulation of
F-box proteins and its consequence on cancer development,
progression and metastasis. Semin Cancer Biol. 36:33–51. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Randle SJ and Laman H: F-box protein
interactions with the hallmark pathways in cancer. Semin Cancer
Biol. 36:3–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zheng N, Wang Z and Wei W:
Ubiquitination-mediated degradation of cell cycle-related proteins
by F-box proteins. Int J Biochem Cell Biol. 73:99–110. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kumar R, Neilsen PM, Crawford J, McKirdy
R, Lee J, Powell JA, Saif Z, Martin JM, Lombaerts M, Cornelisse CJ,
et al: FBXO31 is the chromosome 16q24.3 senescence gene, a
candidate breast tumor suppressor, and a component of an SCF
complex. Cancer Res. 65:11304–11313. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Skowyra D, Craig KL, Tyers M, Elledge SJ
and Harper JW: F-box proteins are receptors that recruit
phosphorylated substrates to the SCF ubiquitin-ligase complex.
Cell. 91:209–219. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ye Y and Rape M: Building ubiquitin
chains: E2 enzymes at work. Nat Rev Mol Cell Biol. 10:755–764.
2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cardozo T and Pagano M: The SCF ubiquitin
ligase: Insights into a molecular machine. Nat Rev Mol Cell Biol.
5:739–751. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mir A, Sritharan K, Mittal K, Vasli N,
Araujo C, Jamil T, Rafiq MA, Anwar Z, Mikhailov A, Rauf S, et al:
Truncation of the E3 ubiquitin ligase component FBXO31 causes
non-syndromic autosomal recessive intellectual disability in a
Pakistani family. Hum Genet. 133:975–984. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Vadhvani M, Schwedhelm-Domeyer N,
Mukherjee C and Stegmüller J: The centrosomal E3 ubiquitin ligase
FBXO31-SCF regulates neuronal morphogenesis and migration. PLoS
One. 8:e575302013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu J, Han L, Li B, Yang J, Huen MS, Pan
X, Tsao SW and Cheung AL: F-box only protein 31 (FBXO31) negatively
regulates p38 mitogen-activated protein kinase (MAPK) signaling by
mediating lysine 48-linked ubiquitination and degradation of
mitogen-activated protein kinase kinase 6 (MKK6). J Biol Chem.
289:21508–21518. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Malonia SK, Dutta P, Santra MK and Green
MR: F-box protein FBXO31 directs degradation of MDM2 to facilitate
p53-mediated growth arrest following genotoxic stress. Proc Natl
Acad Sci USA. 112:pp. 8632–8637. 2015; View Article : Google Scholar : PubMed/NCBI
|
28
|
Johansson P, Jeffery J, Al-Ejeh F, Schulz
RB, Callen DF, Kumar R and Khanna KK: SCF-FBXO31 E3 ligase targets
DNA replication factor Cdt1 for proteolysis in the G2 phase of cell
cycle to prevent re-replication. J Biol Chem. 289:18514–18525.
2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shiloh Y: FBXO31: A new player in the
ever-expanding DNA damage response orchestra. Sci Signal.
2:pe732009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang HL, Zheng WL, Zhao R, Zhang B and Ma
WL: FBXO31 is down-regulated and may function as a tumor suppressor
in hepatocellular carcinoma. Oncol Rep. 24:715–720. 2010.PubMed/NCBI
|
31
|
Kogo R, Mimori K, Tanaka F, Komune S and
Mori M: FBXO31 determines poor prognosis in esophageal squamous
cell carcinoma. Int J Oncol. 39:155–159. 2011.PubMed/NCBI
|
32
|
Zhang X, Kong Y, Xu X, Xing H, Zhang Y,
Han F, Li W, Yang Q, Zeng J, Jia J and Liu Z: F-box protein FBXO31
is down-regulated in gastric cancer and negatively regulated by
miR-17 and miR-20a. Oncotarget. 5:6178–6190. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang HL, Jiang Y, Wang YH, Chen T, He HJ,
Liu T, Yang T, Yang LW, Chen J, Song ZQ, et al: FBXO31 promotes
cell proliferation, metastasis and invasion in lung cancer. Am J
Cancer Res. 5:1814–1822. 2015.PubMed/NCBI
|
34
|
Launonen V, Mannermaa A, Stenbäck F, Kosma
VM, Puistola U, Huusko P, Anttila M, Bloigu R, Saarikoski S,
Kauppila A and Winqvist R: Loss of heterozygosity at chromosomes 3,
6, 8, 11, 16, and 17 in ovarian cancer: Correlation to
clinicopathological variables. Cancer Genet Cytogenet. 122:49–54.
2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Härkönen P, Kyllönen AP, Nordling S and
Vihko P: Loss of heterozygosity in chromosomal region 16q24.3
associated with progression of prostate cancer. Prostate.
62:267–274. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu D, Xia H, Wang F, Chen C and Long J:
MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation
cell cycle and migration in human breast cancer. Onco Targets Ther.
9:5245–5255. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jeffery JM, Kalimutho M, Johansson P,
Cardenas DG, Kumar R and Khanna KK: FBXO31 protects against genomic
instability by capping FOXM1 levels at the G2/M transition.
Oncogene. 36:1012–1022. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Song Q, Jing H, Wu H, Zhou G, Kajiyama T
and Kambara H: Gene expression analysis on a photodiode array-based
bioluminescence analyzer by using sensitivity-improved SRPP.
Analyst. 135:1315–1319. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Manne RK, Agrawal Y, Bargale A, Patel A,
Paul D, Gupta NA, Rapole S, Seshadri V, Subramanyam D, Shetty P and
Santra MK: A microRNA/Ubiquitin ligase feedback loop regulates
slug-mediated invasion in breast cancer. Neoplasia. 19:483–495.
2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bahrami A, Aledavood A, Anvari K,
Hassanian SM, Maftouh M, Yaghobzade A, Salarzaee O, ShahidSales S
and Avan A: The prognostic and therapeutic application of microRNAs
in breast cancer: Tissue and circulating microRNAs. J Cell Physiol.
Jan 21–2017.(Epub ahead of print).
|
41
|
Nassar FJ, Nasr R and Talhouk R: MicroRNAs
as biomarkers for early breast cancer diagnosis, prognosis and
therapy prediction. Pharmacol Ther. 172:34–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wajapeyee N, Serra RW, Zhu X, Mahalingam M
and Green MR: Oncogenic BRAF induces senescence and apoptosis
through pathways mediated by the secreted protein IGFBP7. Cell.
132:363–374. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Santra MK, Wajapeyee N and Green MR: F-box
protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest
after DNA damage. Nature. 459:722–725. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Alao JP: The regulation of cyclin D1
degradation: Roles in cancer development and the potential for
therapeutic invention. Mol Cancer. 6:242007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bartkova J, Rezaei N, Liontos M,
Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E,
Niforou K, Zoumpourlis VC, et al: Oncogene-induced senescence is
part of the tumorigenesis barrier imposed by DNA damage
checkpoints. Nature. 444:633–637. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Di Micco R, Fumagalli M, Cicalese A,
Piccinin S, Gasparini P, Luise C, Schurra C, Garre' M, Nuciforo PG,
Bensimon A, et al: Oncogene-induced senescence is a DNA damage
response triggered by DNA hyper-replication. Nature. 444:638–642.
2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jia L and Sun Y: F-box proteins FBXO31 and
FBX4 in regulation of cyclin D1 degradation upon DNA damage.
Pigment Cell Melanoma Res. 22:518–519. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lin YW, Lee IN, Chen CH, Huang GT, Lee HS,
Lee PH, Lu FJ and Sheu JC: Deletion mapping of chromosome 16q24 in
hepatocellular carcinoma in Taiwan and mutational analysis of the
17-beta-HSD gene localized to the region. Int J Cancer. 93:74–79.
2001. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mori Y, Matsunaga M, Abe T, Fukushige S,
Miura K, Sunamura M, Shiiba K, Sato M, Nukiwa T and Horii A:
Chromosome band 16q24 is frequently deleted in human gastric
cancer. Br J Cancer. 80:556–562. 1999. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kremmidiotis G, Baker E, Crawford J, Eyre
HJ, Nahmias J and Callen DF: Localization of human cadherin genes
to chromosome regions exhibiting cancer-related loss of
heterozygosity. Genomics. 49:467–471. 1998. View Article : Google Scholar : PubMed/NCBI
|
51
|
Whitmore SA, Settasatian C, Crawford J,
Lower KM, McCallum B, Seshadri R, Cornelisse CJ, Moerland EW,
Cleton-Jansen AM, Tipping AJ, et al: Characterization and screening
for mutations of the growth arrest-specific 11 (GAS11) and C16orf3
genes at 16q24.3 in breast cancer. Genomics. 52:325–331. 1998.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Pullman WE and Bodmer WF: Cloning and
characterization of a gene that regulates cell adhesion. Nature.
356:529–532. 1992. View Article : Google Scholar : PubMed/NCBI
|
53
|
Graña X, Claudio PP, De Luca A, Sang N and
Giordano A: PISSLRE, a human novel CDC2-related protein kinase.
Oncogene. 9:2097–2103. 1994.PubMed/NCBI
|
54
|
Powell JA, Gardner AE, Bais AJ, Hinze SJ,
Baker E, Whitmore S, Crawford J, Kochetkova M, Spendlove HE,
Doggett NA, et al: Sequencing, transcript identification, and
quantitative gene expression profiling in the breast cancer loss of
heterozygosity region 16q24.3 reveal three potential
tumor-suppressor genes. Genomics. 80:303–310. 2002. View Article : Google Scholar : PubMed/NCBI
|
55
|
Waldman T, Kinzler KW and Vogelstein B:
p21 is necessary for the p53-mediated G1 arrest in human cancer
cells. Cancer Res. 55:5187–5190. 1995.PubMed/NCBI
|
56
|
Nakagawa H, Zukerberg L, Togawa K, Meltzer
SJ, Nishihara T and Rustgi AK: Human cyclin D1 oncogene and
esophageal squamous cell carcinoma. Cancer. 76:541–549. 1995.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Shinozaki H, Ozawa S, Ando N, Tsuruta H,
Terada M, Ueda M and Kitajima M: Cyclin D1 amplification as a new
predictive classification for squamous cell carcinoma of the
esophagus, adding gene information. Clin Cancer Res. 2:1155–1161.
1996.PubMed/NCBI
|
58
|
Hou X, Liang RB, Wei JC, Xu Y, Fu JH, Luo
RZ, He JH, Zhang LJ, Lin P and Yang HX: Cyclin D1 expression
predicts postoperative distant metastasis and survival in
resectable esophageal squamous cell carcinoma. Oncotarget.
7:31088–31096. 2016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Kanie T, Onoyama I, Matsumoto A, Yamada M,
Nakatsumi H, Tateishi Y, Yamamura S, Tsunematsu R, Matsumoto M and
Nakayama KI: Genetic reevaluation of the role of F-box proteins in
cyclin D1 degradation. Mol Cell Biol. 32:590–605. 2012. View Article : Google Scholar : PubMed/NCBI
|