Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells
- Authors:
- Fernando Francisco Borges Resende
- Simoneide Souza Titze‑de‑Almeida
- Ricardo Titze‑de‑Almeida
-
Affiliations: Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910‑900, Brazil - Published online on: February 1, 2018 https://doi.org/10.3892/ol.2018.7917
- Pages: 4891-4899
This article is mentioned in:
Abstract
Lassman AB: Molecular biology of gliomas. Curr Neurol Neurosci Rep. 4:228–233. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK and DePinho RA: Malignant glioma: Genetics and biology of a grave matter. Genes Dev. 15:1311–1333. 2001. View Article : Google Scholar : PubMed/NCBI | |
Henson JW: Treatment of glioblastoma multiforme: A new standard. Arch Neurol. 63:337–341. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15 Suppl 2:ii1–ii56. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Hegi ME, Gilbert MR and Chakravarti A: Chemoradiotherapy in malignant glioma: Standard of care and future directions. J Clin Oncol. 25:4127–4136. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pedretti M, Verpelli C, Mårlind J, Bertani G, Sala C, Neri D and Bello L: Combination of temozolomide with immunocytokine F16-IL2 for the treatment of glioblastoma. Br J Cancer. 103:827–836. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sathornsumetee S and Rich JN: New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther. 6:1087–1104. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kardeh S, Ashkani-Esfahani S and Alizadeh AM: Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol. 735:150–168. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nogueira V and Hay N: Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 19:4309–4314. 2013. View Article : Google Scholar : PubMed/NCBI | |
Conti A, Guli C, La Torre D, Tomasello C, Angileri FF and Aguennouz M: Role of inflammation and oxidative stress mediators in gliomas. Cancers (Basel). 2:693–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Kwon CH and Nakano I: Detoxification of oxidative stress in glioma stem cells: Mechanism, clinical relevance, and therapeutic development. J Neurosci Res. 92:1419–1424. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moncada S and Bolaños JP: Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 97:1676–1689. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luo CX and Zhu DY: Research progress on neurobiology of neuronal nitric oxide synthase. Neurosci Bull. 27:23–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thomsen LL and Miles DW: Role of nitric oxide in tumour progression: Lessons from human tumours. Cancer Metastasis Rev. 17:107–118. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bakshi A, Nag TC, Wadhwa S, Mahapatra AK and Sarkar C: The expression of nitric oxide synthases in human brain tumours and peritumoral areas. J Neurol Sci. 155:196–203. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fukumura D and Jain RK: Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev. 17:77–89. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tanriover N, Ulu MO, Isler C, Durak H, Oz B, Uzan M and Akar Z: Neuronal nitric oxide synthase expression in glial tumors: Correlation with malignancy and tumor proliferation. Neurol Res. 30:940–944. 2008. View Article : Google Scholar : PubMed/NCBI | |
Swaroop GR, Kelly PA, Bell HS, Shinoda J, Yamaguchi S and Whittle IR: The effects of chronic nitric oxide synthase suppression on glioma pathophysiology. Br J Neurosurg. 14:543–548. 2000. View Article : Google Scholar : PubMed/NCBI | |
Roche AK, Cook M, Wilcox GL and Kajander KC: A nitric oxide synthesis inhibitor (L-NAME) reduces licking behavior and Fos-labeling in the spinal cord of rats during formalin-induced inflammation. Pain. 66:331–341. 1996. View Article : Google Scholar : PubMed/NCBI | |
Southan GJ and Szabó C: Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol. 51:383–394. 1996. View Article : Google Scholar : PubMed/NCBI | |
Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, Rosenberg A, Cohen D, et al: Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol. 23:995–1001. 2005. View Article : Google Scholar : PubMed/NCBI | |
Titze-de-Almeida SS, Lustosa CF, Horst CH, Bel ED and Titze-de-Almeida R: Interferon Gamma potentiates the injury caused by MPP(+) on SH-SY5Y cells, which is attenuated by the nitric oxide synthases inhibition. Neurochem Res. 39:2452–2464. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dotsch J, Harmjanz A, Christiansen H, Hänze J, Lampert F and Rascher W: Gene expression of neuronal nitric oxide synthase and adrenomedullin in human neuroblastoma using real-time PCR. Int J Cancer. 88:172–175. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kwon MJ, Oh E, Lee S, Roh MR, Kim SE, Lee Y, Choi YL, In YH, Park T, Koh SS and Shin YK: Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One. 4:e61622009. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sandhu LC, Warters RL and Dethlefsen LA: Fluorescence studies of Hoechst 33342 with supercoiled and relaxed plasmid pBR322 DNA. Cytometry. 6:191–194. 1985. View Article : Google Scholar : PubMed/NCBI | |
Jia W, Jackson-Cook C and Graf MR: Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol. 223:20–30. 2010. View Article : Google Scholar : PubMed/NCBI | |
Muntané J and La Mata MD: Nitric oxide and cancer. World J Hepatol. 2:337–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sikora AG, Gelbard A, Davies MA, Sano D, Ekmekcioglu S, Kwon J, Hailemichael Y, Jayaraman P, Myers JN, Grimm EA and Overwijk WW: Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy. Clin Cancer Res. 16:1834–1844. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sang DP, Li RJ and Lan Q: Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol Sin. 35:832–838. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jakubowicz-Gil J, Langner E, Badziul D, Wertel I and Rzeski W: Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol. 34:2367–2378. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oliva CR, Moellering DR, Gillespie GY and Griguer CE: Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One. 6:e246652011. View Article : Google Scholar : PubMed/NCBI | |
Zhang WB, Wang Z, Shu F, Jin YH, Liu HY, Wang QJ and Yang Y: Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem. 285:40461–40471. 2010. View Article : Google Scholar : PubMed/NCBI | |
Allen M, Bjerke M, Edlund H, Nelander S and Westermark B: Origin of the U87MG glioma cell line: Good news and bad news. Sci Transl Med. 8:354re32016. View Article : Google Scholar : PubMed/NCBI | |
Bady P, Diserens AC, Castella V, Kalt S, Heinimann K, Hamou MF, Delorenzi M and Hegi ME: DNA fingerprinting of glioma cell lines and considerations on similarity measurements. Neuro Oncol. 14:701–711. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reni M, Mazza E, Zanon S, Gatta G and Vecht CJ: Central nervous system gliomas. Crit Rev Oncol Hematol. 113:213–234. 2017. View Article : Google Scholar : PubMed/NCBI | |
Goldbrunner RH, Wagner S, Roosen K and Tonn JC: Models for assessment of angiogenesis in gliomas. J Neurooncol. 50:53–62. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stylli SS, Luwor RB, Ware TM, Tan F and Kaye AH: Mouse models of glioma. J Clin Neurosci. 22:619–626. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM and Cavenee WK: Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA. 93:pp. 8502–8507. 1996; View Article : Google Scholar : PubMed/NCBI | |
Doblas S, He T, Saunders D, Pearson J, Hoyle J, Smith N, Lerner M and Towner RA: Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J Magn Reson Imaging. 32:267–275. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kirschner S, Murle B, Felix M, Arns A, Groden C, Wenz F, Hug A, Glatting G, Kramer M, Giordano FA and Brockmann MA: Imaging of orthotopic glioblastoma xenografts in mice using a clinical CT scanner: Comparison with Micro-CT and histology. PLoS One. 11:e01659942016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Dong C, Shi J, Ma T, Jin Z, Jia B, Liu Z, Shen L and Wang F: Radiolabeled novel mAb 4G1 for immunoSPECT imaging of EGFRvIII expression in preclinical glioblastoma xenografts. Oncotarget. 8:6364–6375. 2017.PubMed/NCBI | |
Rogers S, Hii H, Huang J, Ancliffe M, Gottardo NG, Dallas P, Lee S and Endersby R: A novel technique of serial biopsy in mouse brain tumour models. PLoS One. 12:e01751692017. View Article : Google Scholar : PubMed/NCBI | |
Arcella A, Oliva MA, Staffieri S, Aalberti S, Grillea G, Madonna M, Bartolo M, Pavone L, Giangaspero F, Cantore G and Frati A: In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J Neurosurg. 123:1026–1035. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nitta Y, Shimizu S, Shishido-Hara Y, Suzuki K, Shiokawa Y and Nagane M: Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 5:486–499. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH and Wimmer E: Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 97:pp. 6803–6808. 2000; View Article : Google Scholar : PubMed/NCBI | |
Kang KB, Wang TT, Woon CT, Cheah ES, Moore XL, Zhu C and Wong MC: Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis. Int J Radiat Oncol Biol Phys. 67:888–896. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Choi SH, Lee JE, Joo JD, Han JH, Park SY and Kim CY: Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model. Oncol Lett. 13:3767–3773. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gravina GL, Mancini A, Marampon F, Colapietro A, Delle Monache S, Sferra R, Vitale F, Richardson PJ, Patient L, Burbidge S and Festuccia C: The brain-penetrating CXCR4 antagonist, PRX177561, increases the antitumor effects of bevacizumab and sunitinib in preclinical models of human glioblastoma. J Hematol Oncol. 10:52017. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Zhao H, Liang S, Zhou D, Zhang W and Yuan L: Gene delivery of apoptin-derived peptide using an adeno-associated virus vector inhibits glioma and prolongs animal survival. Biochem Biophys Res Commun. 482:506–513. 2017. View Article : Google Scholar : PubMed/NCBI | |
Blaise GA, Gauvin D, Gangal M and Authier S: Nitric oxide, cell signaling and cell death. Toxicology. 208:177–192. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brunelli L, Yermilov V and Beckman JS: Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic Biol Med. 30:709–714. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG and Samanta M: Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 63:8670–8673. 2003.PubMed/NCBI | |
Xu W, Liu LZ, Loizidou M, Ahmed M and Charles IG: The role of nitric oxide in cancer. Cell Res. 12:311–320. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Wang YZ, Kagan E and Bonner JC: Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem. 275:22479–22486. 2000. View Article : Google Scholar : PubMed/NCBI | |
Oyoshi T, Nomoto M, Hirano H and Kuratsu J: Pathodynamics of nitric oxide production within implanted glioma studied with an in vivo microdialysis technique and immunohistochemistry. J Pharmacol Sci. 91:15–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Broholm H, Rubin I, Kruse A, Braendstrup O, Schmidt K, Skriver EB and Lauritzen M: Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin Neuropathol. 22:273–281. 2003.PubMed/NCBI | |
Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT and Zadeh G: Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz). 61:25–41. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lenting K, Verhaak R, Ter Laan M, Wesseling P and Leenders W: Glioma: Experimental models and reality. Acta Neuropathol. 133:263–282. 2017. View Article : Google Scholar : PubMed/NCBI | |
Resende FF, Bai X, Del Bel EA, Kirchhoff F, Scheller A and Titze-de-Almeida R: Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction. BMC Cancer. 16:722016. View Article : Google Scholar : PubMed/NCBI | |
Chen J, McKay RM and Parada LF: Malignant glioma: Lessons from genomics, mouse models, and stem cells. Cell. 149:36–47. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cloughesy TF, Cavenee WK and Mischel PS: Glioblastoma: From molecular pathology to targeted treatment. Annu Rev Pathol. 9:1–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D and Fisher PB: In vivo modeling of malignant glioma: The road to effective therapy. Adv Cancer Res. 121:261–330. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Jiang T: Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Lett. 331:139–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kato T, Natsume A, Toda H, Iwamizu H, Sugita T, Hachisu R, Watanabe R, Yuki K, Motomura K, Bankiewicz K and Wakabayashi T: Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther. 17:1363–1371. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shervington A and Patel R: Silencing DNA methyltransferase (DNMT) enhances glioma chemosensitivity. Oligonucleotides. 18:365–374. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Huang A, Liu Z, Liu Y, Hu J, Liu J and Shuai X: Downregulation of ROCK2 through nanocomplex sensitizes the cytotoxic effect of temozolomide in U251 glioma cells. PLoS One. 9:e920502014. View Article : Google Scholar : PubMed/NCBI | |
Sales TT, Resende FF, Chaves NL, Titze-De-Almeida SS, Báo SN, Brettas ML and Titze-De-Almeida R: Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide. Oncol Lett. 12:2581–2589. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cruickshanks N, Shervington L, Patel R, Munje C, Thakkar D and Shervington A: Can hsp90alpha-targeted siRNA combined with TMZ be a future therapy for glioma? Cancer Invest. 28:608–614. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jakubowicz-Gil J, Langner E, Badziul D, Wertel I and Rzeski W: Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol Appl Pharmacol. 273:580–589. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paul-Samojedny M, Pudelko A, Kowalczyk M, Fila-Daniłow A, Suchanek-Raif R, Borkowska P and Kowalski J: Combination therapy with AKT3 and PI3KCA siRNA enhances the antitumor effect of temozolomide and carmustine in T98G glioblastoma multiforme cells. BioDrugs. 30:129–144. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qian C, Li P, Yan W, Shi L, Zhang J, Wang Y, Liu H and You Y: Downregulation of osteopontin enhances the sensitivity of glioma U251 cells to temozolomide and cisplatin by targeting the NF-κB/Bcl-2 pathway. Mol Med Rep. 11:1951–1955. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tivnan A, Zakaria Z, O'Leary C, Kögel D, Pokorny JL, Sarkaria JN and Prehn JH: Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci. 9:2182015. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Du J, Xu B, Xu L, Wang X, Liu J and Wang J: Silence of bFGF enhances chemosensitivity of glioma cells to temozolomide through the MAPK signal pathway. Acta Biochim Biophys Sin (Shanghai). 48:501–508. 2016. View Article : Google Scholar : PubMed/NCBI | |
Titze-de-Almeida R, David C and Titze-de-Almeida SS: The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm Res. 34:1339–1363. 2017. View Article : Google Scholar : PubMed/NCBI | |
de Boer AG and Gaillard PJ: Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 47:323–355. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lonser RR, Sarntinoranont M, Morrison PF and Oldfield EH: Convection-enhanced delivery to the central nervous system. J Neurosurg. 122:697–706. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibly Z and Peer D: Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano. 9:1581–1591. 2015. View Article : Google Scholar : PubMed/NCBI | |
Danhier F, Messaoudi K, Lemaire L, Benoit JP and Lagarce F: Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation. Int J Pharm. 481:154–161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsujiuchi T, Natsume A, Motomura K, Kondo G, Ranjit M, Hachisu R, Sugimura I, Tomita S, Takehara I, Woolley M, et al: Preclinical evaluation of an O(6)-methylguanine-DNA methyltransferase-siRNA/liposome complex administered by convection-enhanced delivery to rat and porcine brains. Am J Transl Res. 6:169–178. 2014.PubMed/NCBI | |
Golan T, Khvalevsky EZ, Hubert A, Gabai RM, Hen N, Segal A, Domb A, Harari G, David EB, Raskin S, et al: RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 6:24560–24570. 2015. View Article : Google Scholar : PubMed/NCBI |