1
|
Lin K, Baritaki S, Militello L, Malaponte
G, Bevelacqua Y and Bonavida B: The role of B-RAF mutations in
melanoma and the induction of EMT via dysregulation of the
NF-κB/Snail/RKIP/PTEN circuit. Genes Cancer. 1:409–420. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Taylor MA, Parvani JG and Schiemann WP:
The pathophysiology of epithelial-mesenchymal transition induced by
transforming growth factor-beta in normal and malignant mammary
epithelial cells. J Mammary Gland Biol Neoplasia. 15:169–190. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Ruiter D, Bogenrieder T, Elder D and
Herlyn M: Melanoma-stroma interactions: Structural and functional
aspects. Lancet Oncol. 3:35–43. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Wu Y and Zhou BP: New insights of
epithelial-mesenchymal transition in cancer metastasis. Acta
Biochim Biophys Sin (Shanghai). 40:643–650. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bedogni B and Powell MB: Hypoxia,
melanocytes and melanoma-survival and tumor development in the
permissive microenvironment of the skin. Pigment Cell Melanoma Res.
22:166–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Palucka AK and Coussens LM: The basis of
oncoimmunology. Cell. 164:1233–1247. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mosser DM and Edwards JP: Exploring the
full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969.
2008. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Qian BZ and Pollard JW: Macrophage
diversity enhances tumor progression and metastasis. Cell.
141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mantovani A and Sica A: Macrophages,
innate immunity and cancer: Balance, tolerance, and diversity. Curr
Opin Immunol. 22:231–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wynn TA, Chawla A and Pollar JW:
Macrophage biology in development, homeostasis and disease. Nature.
496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Klimp AH, de Vries EG, Scherphof GL and
Daemen T: A potential role of macrophage activation in the
treatment of cancer. Crit Rev Oncol Hematol. 44:143–161. 2002.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Teng MW, Swann JB, Koebel CM, Schreiber RD
and Smyth MJ: Immune-mediated dormancy: An equilibrium with cancer.
J Leukoc Biol. 84:988–993. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lin EY and Pollard JW: Tumor-associated
macrophages press the angiogenic switch in breast cancer. Cancer
Res. 67:5064–5066. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pang B, Zhou X, Yu H, Dong M, Taghizadeh
K, Wishnok JS, Tannenbaum SR and Dedon PC: Lipid peroxidation
dominates the chemistry of DNA adduct formation in a mouse model of
inflammation. Carcinogenesis. 28:1807–1813. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lewis CE, Harney AS and Pollard JW: The
multifaceted role of perivascular macrophages in tumors. Cancer
Cell. 30:3652016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Torroella-Kouri M, Silvera R, Rodriguez D,
Caso R, Shatry A, Opiela S, Ilkovitch D, Schwendener RA,
Iragavarapu-Charyulu V, Cardentey Y, et al: Identification of a
subpopulation of macrophages in mammary tumor-bearing mice that are
neither M1 nor M2 and are less differentiated. Cancer Res.
69:4800–4809. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Curiel TJ, Coukos G, Zou L, Alvarez X,
Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L,
Burow M, et al: Specific recruitment of regulatory T cells in
ovarian carcinoma fosters immune privilege and predicts reduced
survival. Nat Med. 10:942–949. 2004. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Bianchini F, Massi D, Marconi C, Franchi
A, Baroni G, Santucci M, Mannini A, Mugnai G and Calorini L:
Expression of cyclo-oxygenase-2 in macrophages associated with
cutaneous melanoma at different stages of progression.
Prostaglandins Other Lipid Mediat. 83:320–328. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bronkhorst IH, Ly LV, Jordanova ES,
Vrolijk J, Versluis M, Luyten GP and Jager MJ: Detection of M2
macrophages in uveal melanoma and relation with survival. Invest
Ophthalmol Vis Sci. 52:643–650. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jager MJ, Ly LV, El Filali M and Madigan
MC: Macrophages in uveal melanoma and in experimental ocular tumor
models: Friends or foes? Prog Retin Eye Res. 30:129–146. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Shi L, Lei D, Ma C, Xu F, Li Y, Wang Y,
Cong N, Liu D and Pan XL: Clinicopathological implications of
tumour-associated macrophages and vascularization in sinonasal
melanoma. J Int Med Res. 38:1276–1286. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mrad M, Imbert C, Garcia V, Rambow F,
Therville N, Carpentier S, Ségui B, Levade T, Azar R, Marine JC, et
al: Downregulation of sphingosine kinase-1 induces protective tumor
immunity by promoting M1 macrophage response in melanoma.
Oncotarget. 7:71873–71886. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lázár-Molnár E, Hegyesi H, Tóth S and
Falus A: Autocrine and paracrine regulation by cytokines and growth
factors in melanoma. Cytokine. 12:547–554. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ilkovitch D and Lopez DM: Immune
modulation by melanoma-derived factors. Exp Dermatol. 7:977–985.
2008. View Article : Google Scholar
|
26
|
Graves DT, Barnhill R, Galanopoulos T and
Antoniades HN: Expression of monocyte chemotactic protein-1 in
human melanoma in vivo. Am J Pathol. 140:9–14. 1992.PubMed/NCBI
|
27
|
Nesbit M, Schaider H, Miller TH and Herlyn
MJ: Low-level monocyte chemoattractant protein-1 stimulation of
monocytes leads to tumor formation in nontumorigenic melanoma
cells. J Immunol. 166:6483–6490. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gazzaniga S, Bravo AI, Guglielmotti A, van
Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J and Wainstok
R: Targeting tumor-associated macrophages and inhibition of MCP-1
reduce angiogenesis and tumor growth in a human melanoma xenograft.
J Invest Dermatol. 127:2031–2041. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Torisu H, Ono M, Kiryu H, Furue M, Ohmoto
Y, Nakayama J, Nishioka Y, Sone S and Kuwano M: Macrophage
infiltration correlates with tumor stage and angiogenesis in human
malignant melanoma: Possible involvement of TNFalpha and IL-1alpha.
Int J Cancer. 85:182–188. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Varney ML, Olsen KJ, Mosley RL and Singh
RK: Paracrine regulation of vascular endothelial growth factor-a
expression during macrophage-melanoma cell interaction: Role of
monocyte chemotactic protein-1 and macrophage colony-stimulating
factor. J Interferon Cytokine Res. 25:674–683. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Swatler J and Kozłowska E: Immune
checkpointtargeted cancer immunotherapies. Postepy Hig Med Dosw
(Online). 70:25–42. 2016.(In Polish). View Article : Google Scholar : PubMed/NCBI
|
32
|
Mao Y, Poschke I, Wennerberg E, Pico de
Coaña Y, Egyhazi Brage S, Schultz I, Hansson J, Masucci G,
Lundqvist A and Kiessling R: Melanoma-educated CD14+ cells acquire
a myeloid-derived suppressor cell phenotype through COX-2-dependent
mechanisms. Cancer Res. 73:3877–3887. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hino R, Kabashima K, Kato Y, Yagi H,
Nakamura M, Honjo T, Okazaki T and Tokura Y: Tumor cell expression
of programmed cell death-1 ligand 1 is a prognostic factor for
malignant melanoma. Cancer. 116:1757–1766. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kakizaki A, Fujimura T, Furudate S,
Kambayashi Y, Yamauchi T, Yagita H and Aiba S: Immunomodulatory
effect of peritumorally administered interferon-beta on melanoma
through tumor-associated macrophages. Oncoimmunology.
4:e10475842015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lesinski GB: The potential for targeting
the STAT3 pathway as a novel therapy for melanoma. Future Oncol.
9:925–927. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Massi D, Marconi C, Franchi A, Bianchini
F, Paglierani M, Ketabchi S, Miracco C, Santucci M and Calorini L:
Arginine metabolism in tumor-associated macrophages in cutaneous
malignant melanoma: Evidence from human and experimental tumors.
Hum Pathol. 38:1516–1525. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kale S, Raja R, Thorat D, Soundararajan G,
Patil TV and Kundu GC: Osteopontin signaling upregulates
cyclooxygenase-2 expression in tumor-associated macrophages leading
to enhanced angiogenesis and melanoma growth via α9β1 integrin.
Oncogene. 33:2295–2306. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gregório H, Raposo TP, Queiroga FL, Prada
J and Pires I: Investigating associations of cyclooxygenase-2
expression with angiogenesis, proliferation, macrophage and
T-lymphocyte infiltration in canine melanocytic tumours. Melanoma
Res. 26:338–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hollander L, Guo X, Velazquez H, Chang J,
Safirstein R, Kluger H, Cha C and Desir GV: Renalase expression by
melanoma and tumor-associated macrophages promotes tumor growth
through a STAT3-mediated mechanism. Cancer Res. 76:3884–3894. 2016.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Marconi C, Bianchini F, Mannini A, Mugnai
G, Ruggieri S and Calorini L: Tumoral and macrophage uPAR and MMP-9
contribute to the invasiveness of B16 murine melanoma cells. Clin
Exp Metastasis. 25:225–231. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim OH, Kang GH, Noh H, Cha JY, Lee HJ,
Yoon JH, Mamura M, Nam JS, Lee DH, Kim YA, et al: Proangiogenic
TIE2(+)/CD31 (+) macrophages are the predominant population of
tumor-associated macrophages infiltrating metastatic lymph nodes.
Mol Cells. 36:432–438. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yamada K, Uchiyama A, Uehara A, Perera B,
Ogino S, Yokoyama Y, Takeuchi Y, Udey MC, Ishikawa O and Motegi S:
MFG-E8 drives melanoma growth by stimulating mesenchymal stromal
cell-induced angiogenesis and M2 polarization of tumor-associated
macrophages. Cancer Res. 76:4283–4292. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Huber R, Meier B, Otsuka A, Fenini G,
Satoh T, Gehrke S, Widmer D, Levesque MP, Mangana J, Kerl K, et al:
Tumour hypoxia promotes melanoma growth and metastasis via high
mobility group box-1 and M2-like macrophages. Sci Rep. 6:299142016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Tham M, Tan KW, Keeble J, Wang X, Hubert
S, Barron L, Tan NS, Kato M, Prevost-Blondel A, Angeli V and
Abastado JP: Melanoma-initiating cells exploit M2 macrophage TGFβ
and arginase pathway for survival and proliferation. Oncotarget.
5:12027–12042. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chang CI, Liao JC and Kuo L: Macrophage
arginase promotes tumor cell growth and suppresses nitric
oxide-mediated tumor cytotoxicity. Cancer Res. 61:1100–1106.
2001.PubMed/NCBI
|
46
|
Clawson GA, Matters GL, Xin P,
Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI and
Abraham T: Macrophage-tumor cell fusions from peripheral blood of
melanoma patients. PLoS One. 10:e01343202015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Somasundaram R and Herlyn D: Chemokines
and the microenvironment in neuroectodermal tumor-host interaction.
Semin Cancer Biol. 19:92–96. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang H and Zhang L, Yang L, Liu C, Zhang Q
and Zhang L: Targeting macrophage anti-tumor activity to suppress
melanoma progression. Oncotarget. 8:18486–18496. 2017.PubMed/NCBI
|
49
|
Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L,
Yu X, Luo Q and Zhang Z: Molecular-targeted immunotherapeutic
strategy for melanoma via dual-targeting nanoparticles delivering
small interfering RNA to tumor-associated macrophages. ACS Nano.
11:9536–9549. 2017. View Article : Google Scholar : PubMed/NCBI
|