1
|
Roett MA and Evans P: Ovarian cancer: An
overview. Am Fam Physician. 80:609–616. 2009.PubMed/NCBI
|
2
|
Rosen B, Laframboise S, Ferguson S, Dodge
J, Bernardini M, Murphy J, Segev Y, Sun P and Narod SA: The impacts
of neoadjuvant chemotherapy and debulking surgery on survival from
advanced ovarian cancer. Gynecol Oncol. 134:462–467. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hennessy BT, Coleman RL and Markman M:
Ovarian cancer. Lancet. 374:1371–1382. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Coleman RL, Monk BJ, Sood AK and Herzog
TJ: Latest research and clinical treatment of advanced-stage
epithelial ovarian cancer. Nat Rev Clin Oncol. 10:211–224. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kandalaft LE, Powell DJ Jr, Singh N and
Coukos G: Immunotherapy for ovarian cancer: What's next? J Clin
Oncol. 29:925–933. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang L, Conejo-Garcia JR, Katsaros D,
Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H,
Schleinger K, Liebman MN, et al: Intratumoral T cells, recurrence,
and survival in epithelial ovarian cancer. N Engl J Med.
348:203–213. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dunn GP, Bruce AT, Ikeda H, Old LJ and
Schreiber RD: Cancer immunoediting: From immunosurveillance to
human escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Khong HT and Restifo NP: Natural selecyion
of tumor variants in the generation of ‘tumor escape’ phenotypes.
Nat Immunol. 3:999–1005. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Curiel TJ, Coukos G, Zou L, Alvarez X,
Cheng P, Mottram P, Evdemon-Hogen M, Conejo-Garcia JR, Zhang L,
Burow M, et al: Specific recruitment of regulatory T cells in
ovarian carcinoma fosters immune privilege and predicts reduced
survival. Nat Med. 10:942–949. 2004. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Gordon IO and Freedman RS: Defective
antitumor function of monocyte-derived macrophages from epithelial
ovarian cancer patients. Clin Cancer Res. 12:1515–1524. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Tsai HF and Hsu PN: Cancer immunotherapy
by targeting immune checkpoints: Mechanism of T cell dysfunction in
cancer immunity and new therapeutic target. J Biomed Sci.
24:352017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rizvi NA, Mazières J, Planchard D,
Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E,
Mennecier B, et al: Activity and safety of nivolumab, an anti-PD-1
immune checkpoint inhibitor, for patients with advanced, refractory
squamous non-small-cell lung cancer (CheckMate 063): A phase 2,
single-arm trial. Lancet Oncol. 16:257–265. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mittica G, Genta S, Aglietta M and
Valabrega G: Immune checkpoint inhibitors: A new opportunity in the
treatment of ovarian cancer? Int J Mol Sci. 17(pii): E11692016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Hamanishi J, Mandai M, Ikeda T, Minami M,
Kawaguchi A, Murayama T, Kanai M, Mori Y, Matsumoto S, Chikuma S,
et al: Safety and antitumor activity of anti-PD-1 antibody,
nivolumab, in patients with platinum-resistant ovarian cancer. J
Clin Oncol. 33:4015–4022. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Disis ML, Patel MR, Pant S, Hamilton EP,
Lockhart AC, Kelly K, Beck JT, Gordon MS, Weiss GJ, Taylor MH, et
al: Avelumab (MSB0010718C; anti-PD-L1) in patients with
recurrent/refractory ovarian cancer from the JAVELIN Solid Tumor
phase Ib trial: Safety and clinical activity. J Clin Oncol. 34 15
Suppl:S55332016.
|
17
|
Varga A, Piha-Paul SA, Ott PA, Mehnert JM,
Berton-Rigaud D, Johnson EA, Cheng JD, Yuan S, Rubin EH and Matei
DE: Antitumor activity and safety of pembrolizumab in patients
(pts) with PD-L1 positive advanced ovarian cancer: Interim results
from a phase Ib study. J Clin Oncol. 33 15 Suppl:S55102015.
|
18
|
Mandai M, Hamanishi J, Abiko K, Matsumura
N, Baba T and Konishi I: Anti-PD-L1/PD-1 immune therapies in
ovarian cancer: Basic mechanism and future clinical application.
Int J Clin Oncol. 21:456–461. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nirschl CJ and Drake CG: Molecular
pathways: Coexpression of immune checkpoint molecules: Signaling
pathways and implications for cancer immunotherapy. Clin Cancer
Res. 19:4917–4924. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lines JL, Sempere LF, Broughton T, Wang L
and Noelle R: VISTA is a novel broad-spectrum negative checkpoint
regulator for cancer immunotherapy. Cancer Immunol Res. 2:510–517.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Collin M: Immune checkpoint inhibitors: A
patent review (2010–2015). Expert Opin Ther Pat. 26:555–564. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia
P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant
P, et al: Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are
negatively regulated by LAG-3 and PD-1 in human ovarian cancer.
Proc Natl Acad Sci USA. 107:pp. 7875–7880. 2010; View Article : Google Scholar : PubMed/NCBI
|
23
|
Maine CJ, Aziz NH, Chatterjee J, Hayford
C, Brewig N, Whilding L, George AJ and Ghaem-Maghami S: Programmed
death ligand-1 over-expression correlates with malignancy and
contributes to immune regulation in ovarian cancer. Cancer Immunol
Immunother. 63:215–224. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu J, Liu C, Qian S and Hou H: The
expression of Tim-3 in peripheral blood of ovarian cancer. DNA Cell
Biol. 32:648–653. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun S, Fei X, Mao Y, Wang X, Garfield DH,
Huang O, Wang J, Yuan F, Sun L, Yu Q, et al: PD-1(+) immune cell
infiltration inversely correlates with survival of operable breast
cancer patients. Cancer Immunol Immunother. 63:395–406. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Thompson RH, Dong H, Lohse CM, Leibovich
BC, Blute ML, Cheville JC and Kwon ED: PD-1 is expressed by
tumor-infiltrating immune cells and is associated with poor outcome
for patients with renal cell carcinoma. Clin Cancer Res.
13:1757–1761. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Y, Lin J, Cui J, Han T, Jiao F, Meng
Z and Wang L: Prognostic value and clinicopathological features of
PD-1/PD-L1 expression with mismatch repair status and desmoplastic
stroma in Chinese patients with pancreatic cancer. Oncotarget.
8:9354–9365. 2017.PubMed/NCBI
|
28
|
Lafuente-Sanchis A, Zúñiga Á, Estors M,
Martínez-Hernández NJ, Cremades A, Cuenca M and Galbis JM:
Association of PD-1, PD-L1, and CTLA-4 gene expression and
clinicopathologic characteristics in patients with non-small-cell
lung cancer. Clin Lung Cancer. 18:e109–e116. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Muenst S, Soysal SD, Gao F, Obermann EC,
Oertli D and Gillanders WE: The presence of programmed death 1
(PD-1)-positive tumor-infiltrating lymphocytes is associated with
poor prognosis in human breast cancer. Breast Cancer Res Treat.
139:667–676. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hsu MC, Hsiao JR, Chang KC, Wu YH, Su IJ,
Jin YT and Chang Y: Increase of programmed death-1-expressing
intratumoral CD8 T cells predicts a poor prognosis for
nasopharyngeal carcinoma. Mod Pathol. 23:1393–1403. 2010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chatterjee J, Dai W, Aziz NHA, Teo PY,
Wahba J, Phelps DL, Maine CJ, Whilding L, Dina R, Trevisan G, et
al: Clinical use of programmed cell death-1 (PD-1) and its ligand
(PD-L1) expression as discriminatory and predictive markers in
ovarian cancer. Clin Cancer Res:. 23:3453–3460. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hodi FS, Chesney J, Pavlick AC, Robert C,
Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK,
Agarwala SS, et al: Combined nivolumab and ipilimumab versus
ipilimumab alone in patients with advanced melanoma: 2-year overall
survival outcomes in a multicentre, randomised, controlled, phase 2
trial. Lancet Oncol. 17:1558–1568. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
National Institunes of Health, . Nivolumab
with or without ipilimumab in treating patients with persistent or
recurrent epithelial ovarian, primary peritoneal, or fallopian tube
cancer. National Institunes of Health; Bethesda, Maryland: 2015,
https://clinicaltrials.gov/ct2/show/NCT02498600July
15–2015
|
34
|
Abiko K, Mandai M, Hamanishi J, Yoshioka
Y, Matsumura N, Baba T, Yamaguchi K, Murakami R, Yamamoto A, Kharma
B, et al: PD-L1 on tumor cells is induced in ascites and promotes
peritoneal dissemination of ovarian cancer through CTL dysfunction.
Clin Cancer Res. 19:1363–1374. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hamanishi J, Mandai M, Iwasaki M, Okazaki
T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Ta kakura K, Minato N,
et al: Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+
T lymphocytes are prognostic factors of human ovarian cancer. Proc
Natl Acad Sci USA. 104:pp. 3360–3365. 2007; View Article : Google Scholar : PubMed/NCBI
|
36
|
Webb JR, Milne K, Kroeger DR and Nelson
BH: PD-L1 expression is associated with tumor-infiltrating T cells
and favorable prognosis in high-grade serous ovarian cancer.
Gynecol Oncol. 141:293–302. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Darb-Esfahani S, Kunze CA, Kulbe H,
Sehouli J, Wienert S, Lindner J, Budczies J, Bockmayr M, Dietel M,
Denkert C, et al: Prognostic impact of programmed cell death-1
(PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and
tumor-infiltrating lymphocytes in ovarian high grade serous
carcinoma. Oncotarget. 7:1486–1499. 2016. View Article : Google Scholar : PubMed/NCBI
|