1
|
Michalopoulos GK and DeFrances MC: Liver
regeneration. Science. 276:60–66. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zimmermann A: Regulation of liver
regeneration. Nephrol Dial Transplant. 19 Suppl 4:iv6–iv10. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Palmes D and Spiegel HU: Animal models of
liver regeneration. Biomaterials. 25:1601–1611. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bendixen E, Danielsen M, Larsen K and
Bendixen C: Advances in porcine genomics and proteomics-a toolbox
for developing the pig as a model organism for molecular biomedical
research. Brief Funct Genomics. 9:208–219. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Budai A, Fulop A, Hahn O, Onody P, Kovacs
T, Nemeth T, Dunay M and Szijarto A: Animal models for associating
liver partition and portal vein ligation for staged hepatectomy
(ALPPS): Achievements and future perspectives. Eur Surg Res.
58:140–157. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gimble JM, Katz AJ and Bunnell BA:
Adipose-derived stem cells for regenerative medicine. Circ Res.
100:1249–1260. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mizuno H, Tobita M and Uysal AC: Concise
review: Adipose-derived stem cells as a novel tool for future
regenerative medicine. Stem Cells. 30:804–810. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pak J, Lee JH, Kartolo WA and Lee SH:
Cartilage regeneration in human with adipose tissue-derived stem
cells: Current status in clinical implications. Biomed Res Int.
2016:47026742016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Premaratne GU, Ma LP, Fujita M, Lin X,
Bollano E and Fu M: Stromal vascular fraction transplantation as an
alternative therapy for ischemic heart failure: Anti-inflammatory
role. J Cardiothorac Surg. 6:432011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Koh YJ, Koh BI, Kim H, Joo HJ, Jin HK,
Jeon J, Choi C, Lee DH, Chung JH, Cho CH, et al: Stromal vascular
fraction from adipose tissue forms profound vascular network
through the dynamic reassembly of blood endothelial cells.
Arterioscler Thromb Vasc Biol. 31:1141–1150. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Schnitzbauer A, Lang SA, Fichtner-Feigl S,
et al: In situ split with portal vein ligation induces rapid left
lateral lobe hypertrophy enabling two-staged extended right hepatic
resection. Berl Oral Presentation. 35:2010.
|
12
|
Schnitzbauer AA, Lang SA, Goessmann H,
Nadalin S, Baumgart J, Farkas SA, Fichtner-Feigl S, Lorf T,
Goralcyk A, Hörbelt R, et al: Right portal vein ligation combined
with in situ splitting induces rapid left lateral liver lobe
hypertrophy enabling 2-staged extended right hepatic resection in
small-for-size settings. Ann Surg. 255:405–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schadde E, Raptis DA, Schnitzbauer AA,
Ardiles V, Tschuor C, Lesurtel M, Abdalla EK, Hernandez-Alejandro
R, Jovine E, Machado M, et al: Prediction of mortality after ALPPS
stage-1: An analysis of 320 patients from the international ALPPS
registry. Ann Surg. 262:780–786. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Saidi RF, Rajeshkumar B, Shariftabrizi A,
Bogdanov AA, Zheng S, Dresser K and Walter O: Human adipose-derived
mesenchymal stem cells attenuate liver ischemia-reperfusion injury
and promote liver regeneration. Surgery. 156:1225–1231. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Pascual-Miguelañez I, Salinas-Gomez J,
Fernandez-Luengas D, Villar-Zarra K, Clemente LV, Garcia-Arranz M
and Olmo DG: Systemic treatment of acute liver failure with adipose
derived stem cells. J Invest Surg. 28:120–126. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin K, Matsubara Y, Masuda Y, Togashi K,
Ohno T, Tamura T, Toyoshima Y, Sugimachi K, Toyoda M, Marc H and
Douglas A: Characterization of adipose tissue-derived cells
isolated with the Celution system. Cytotherapy. 10:417–426. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Andrews S: FastQC: A quality control tool
for high throughput sequence data. Anim Sci. 2010, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
|
18
|
Dobin A, Davis CA, Schlesinger F, Drenkow
J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR:
Ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liao Y, Smyth GK and Shi W: featureCounts:
An efficient general purpose program for assigning sequence reads
to genomic features. Bioinformatics. 30:923–930. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Von Mering C, Huynen M, Jaeggi D, Schmidt
S, Bork P and Snel B: STRING: A database of predicted functional
associations between proteins. Nucleic Acids Res. 31:258–261. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43(Database Issue): D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mi H, Huang X, Muruganujan A, Tang H,
Mills C, Kang D and Thomas PD: PANTHER version 11: Expanded
annotation data from gene ontology and Reactome pathways, and data
analysis tool enhancements. Nucleic Acids Res. 45:D183–D189. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kanehisa M, Goto S, Sato Y, Furumichi M
and Tanabe M: KEGG for integration and interpretation of
large-scale molecular data sets. Nucleic Acids Res. 40(Database
Issue): D109–D114. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hahn E, Wick G, Pencev D and Timpl R:
Distribution of basement membrane proteins in normal and fibrotic
human liver: Collagen type IV, laminin, and fibronectin. Gut.
21:63–71. 1980. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pöschl E, Schlötzer-Schrehardt U,
Brachvogel B, Saito K, Ninomiya Y and Mayer U: Collagen IV is
essential for basement membrane stability but dispensable for
initiation of its assembly during early development. Development.
131:1619–1628. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gressner OA, Rizk MS, Kovalenko E,
Weiskirchen R and Gressner AM: Changing the pathogenetic roadmap of
liver fibrosis? Where did it start; where will it go? J
Gastroenterol Hepatol. 23:1024–1035. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rychtrmoc D, Hubálková L, Víšková A, Libra
A, Bunček M and Červinková Z: Transcriptome temporal and functional
analysis of liver regeneration termination. Physiol Res. 61 Suppl
2:S77–S92. 2012.PubMed/NCBI
|
30
|
Okano J, Shiota G, Matsumoto K, Yasui S,
Kurimasa A, Hisatome I, Steinberg P and Murawaki Y: Hepatocyte
growth factor exerts a proliferative effect on oval cells through
the PI3K/AKT signaling pathway. Biochem Biophys Res Commun.
309:298–304. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jackson LN, Larson SD, Silva SR, Rychahou
PG, Chen LA, Qiu S, Rajaraman S and Evers BM: PI3K/Akt activation
is critical for early hepatic regeneration after partial
hepatectomy. Am J Physiol Gastrointest Liver Physiol.
294:G1401–G1410. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Reiner R, Ben-Asouli Y, Krilovetzky I and
Jarrous N: A role for the catalytic ribonucleoprotein RNase P in
RNA polymerase III transcription. Genes Dev. 20:1621–1635. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Veidal SS, Karsdal MA, Vassiliadis E,
Nawrocki A, Larsen MR, Nguyen QH, Hägglund P, Luo Y, Zheng Q,
Vainer B and Leeming DJ: MMP mediated degradation of type VI
collagen is highly associated with liver fibrosis-identification
and validation of a novel biochemical marker assay. PLoS One.
6:e247532011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cheng W, Xiao L, Ainiwaer A, Wang Y, Wu G,
Mao R, Yang Y and Bao Y: Molecular responses of radiation-induced
liver damage in rats. Mol Med Rep. 11:2592–2600. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang Y, Zhang H, Zhao Z, Lv M, Jia J,
Zhang L, Tian X, Chen Y, Li B, Liu M, et al: Enhanced expression of
glucose-regulated protein 78 correlates with malondialdehyde levels
during the formation of liver cirrhosis in rats. Exp Ther Med.
10:2119–2125. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chuang HM, Su HL, Li C, Lin SZ, Yen SY,
Huang MH, Ho LI, Chiou TW and Harn HJ: The role of
butylidenephthalide in targeting the microenvironment which
contributes to liver fibrosis amelioration. Front Pharmacol.
7:1122016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kongphat W, Pudgerd A and Sridurongrit S:
Hepatocyte-specific expression of constitutively active Alk5
exacerbates thioacetamide-induced liver injury in mice. Heliyon.
3:e003052017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ross MA, Sander CM, Kleeb TB, Watkins SC
and Stolz DB: Spatiotemporal expression of angiogenesis growth
factor receptors during the revascularization of regenerating rat
liver. Hepatology. 34:1135–1148. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Koncina E, Roth L, Gonthier B and Bagnard
D: Role of semaphorins during axon growth and guidance. Adv Exp Med
Biol. 621:50–64. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fu L, Kitamura T, Iwabuchi K, Ichinose S,
Yanagida M, Ogawa H, Watanabe S, Maruyama T, Suyama M and Takamori
K: Interplay of neuropilin-1 and semaphorin 3A after partial
hepatectomy in rats. World J Gastroenterol. 18:5034–5041. 2012.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Yamamoto H, Murawaki Y and Kawasaki H:
Hepatic collagen synthesis and degradation during liver
regeneration after partial hepatectomy. Hepatology. 21:155–161.
1995. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shimamura T, Fujisawa T, Husain SR, Kioi
M, Nakajima A and Puri RK: Novel role of IL-13 in fibrosis induced
by nonalcoholic steatohepatitis and its amelioration by
IL-13R-directed cytotoxin in a rat model. J Immunol. 181:4656–4665.
2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mederacke I, Hsu CC, Troeger JS, Huebener
P, Mu X, Dapito DH, Pradere JP and Schwabe RF: Fate tracing reveals
hepatic stellate cells as dominant contributors to liver fibrosis
independent of its aetiology. Nat Commun. 4:28232013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Maria AT, Toupet K, Maumus M, Fonteneau G,
Le Quellec A, Jorgensen C, Guilpain P and Noël D: Human adipose
mesenchymal stem cells as potent anti-fibrosis therapy for systemic
sclerosis. J Autoimmun. 70:31–39. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tan Y, Yoshida Y, Hughes DE and Costa RH:
Increased expression of hepatocyte nuclear factor 6 stimulates
hepatocyte proliferation during mouse liver regeneration.
Gastroenterology. 130:1283–1300. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Diaz B, Shani G, Pass I, Anderson D,
Quintavalle M and Courtneidge SA: Tks5-dependent, nox-mediated
generation of reactive oxygen species is necessary for invadopodia
formation. Sci Signal. 2:ra532009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Arvaniti E, Moulos P, Vakrakou A,
Chatziantoniou C, Chadjichristos C, Kavvadas P, Charonis A and
Politis PK: Whole-transcriptome analysis of UUO mouse model of
renal fibrosis reveals new molecular players in kidney diseases.
Sci Rep. 6:262352016. View Article : Google Scholar : PubMed/NCBI
|