The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications (Review)
- Authors:
- Lei Wu
- Lili Yang
-
Affiliations: Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, P.R. China - Published online on: March 8, 2018 https://doi.org/10.3892/ol.2018.8215
- Pages: 6799-6805
This article is mentioned in:
Abstract
de Cos Sánchez J, González Sojo MA, Montero MV, Calvo Pérez MC, Vicente MJ and Valle MH: Non-small cell lung cancer and silent brain metastasis. Survival and prognostic factors. Lung Cancer. 63:140–145. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wood SL, Pernemalm M, Crosbie PA and Whetton AD: Molecular histology of lung cancer: From targets to treatments. Cancer Treat Rev. 41:361–375. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khan N and Mukhtar H: Dietary agents for prevention and treatment of lung cancer. Cancer Lett. 359:155–164. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shang GH, Jia CQ, Tian H, Xiao W, Li Y, Wang AH, Dong L and Lin DJ: Serum high mobility group box protein 1 as a clinical marker for non-small cell lung cancer. Respir Med. 103:1949–1953. 2009. View Article : Google Scholar : PubMed/NCBI | |
Andersson U, Antoine DJ and Tracey KJ: The functions of HMGB1 depend on molecular localization and post-translational modifications. J Intern Med. 276:420–424. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun X and Tang D: HMGB1-dependent and -independent autophagy. Autophagy. 10:1873–1876. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Li Y, Wang Z, Chen L, Dong X and Nie X: Interference with HMGB1 increases the sensitivity to chemotherapy drugs by inhibiting HMGB1-mediated cell autophagy and inducing cell apoptosis. Tumour Biol. 36:8585–8592. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Tang D and Kang R: Oxidative stress-mediated HMGB1 biology. Front Physiol. 6:932015. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Livesey KM, Zeh HJ, Loze MT and Tang D: HMGB1: A novel beclin 1-binding protein active in autophagy. Autophagy. 6:1209–1211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goh WW, Fan M, Low HS, Sergot M and Wong L: Enhancing the utility of proteomics signature profiling (PSP) with pathway derived subnets (PDSs), performance analysis and specialised ontologies. BMC Genomics. 14:352013. View Article : Google Scholar : PubMed/NCBI | |
Musumeci D, Roviello GN and Montesarchio D: An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther. 141:347–357. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bianchi ME: HMGB1 loves company. J Leukoc Biol. 86:573–576. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D, et al: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem. 270:25752–25761. 1995. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A and Abraham E: Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 279:7370–7377. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, et al: Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 8:487–496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Coyne CB, Zeh HJ and Lotze MT: PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol Rev. 249:158–175. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, et al: High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol. 290:C917–C924. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee SA, Kwak MS, Kim S and Shin JS: The role of high mobility group box 1 in innate immunity. Yonsei Med J. 55:1165–1176. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Hong L, Sun H, Shi M and Song Y: The expression of high-mobility group protein box 1 correlates with the progression of non-small cell lung cancer. Oncol Rep. 22:535–539. 2009.PubMed/NCBI | |
Rouhiainen A, Kuja-Panula J, Tumova S and Rauvala H: RAGE-mediated cell signaling. Methods Mol Biol. 963:239–263. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sirois CM, Jin T, Miller AL, Bertheloot D, Nakamura H, Horvath GL, Mian A, Jiang J, Schrum J, Bossaller L, et al: RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med. 210:2447–2463. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen RC, Yi PP, Zhou RR, Xiao MF, Huang ZB, Tang DL, Huang Y and Fan XG: The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol Cell Biochem. 390:271–280. 2014. View Article : Google Scholar : PubMed/NCBI | |
Riuzzi F, Sorci G and Donato R: The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem. 281:8242–8253. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yaser AM, Huang Y, Zhou RR, Hu GS, Xiao MF, Huang ZB, Duan CJ, Tian W, Tang DL and Fan XG: The Role of receptor for advanced glycation end products (RAGE) in the proliferation of hepatocellular carcinoma. Int J Mol Sci. 13:5982–5997. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Mi Y, Yang H, Hu A, Zhang Q and Shang C: The activation of HMGB1 as a progression factor on inflammation response in normal human bronchial epithelial cells through RAGE/JNK/NF-κB pathway. Mol Cell Biochem. 380:249–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Hou C, Kong J, Wen H, Zheng X, Wu L, Huang H and Chen Y: HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem. 405:63–71. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ohmori H, Luo Y and Kuniyasu H: Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert Opin Ther Targets. 15:183–193. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nogueira-Machado JA and de Oliveira Volpe CM: HMGB-1 as a target for inflammation controlling. Recent Pat Endocr Metab Immune Drug Discov. 6:201–209. 2012. View Article : Google Scholar : PubMed/NCBI | |
Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, et al: Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 405:354–360. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kawada M, Usami I, Someno T, Watanabe T, Abe H, Inoue H, Ohba S, Masuda T, Tabata Y, Yamaguchi S and Ikeda D: NBRI17671, a new antitumor compound, produced by Acremonium sp. CR17671. J Antibiot (Tokyo). 63:237–243. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A, et al: Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 143:1699–1712. 1993.PubMed/NCBI | |
Schraml P, Bendik I and Ludwig CU: Differential messenger RNA and protein expression of the receptor for advanced glycosylated end products in normal lung and non-small cell lung carcinoma. Cancer Res. 57:3669–3671. 1997.PubMed/NCBI | |
Katsuoka F, Kawakami Y, Arai T, Imuta H, Fujiwara M, Kanma H and Yamashita K: Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene. Biochem Biophys Res Commun. 238:512–516. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Li Y, Yu W, Ma L, Ji X and Xiao W: Expression of the receptor for advanced glycation end-products and frequency of polymorphism in lung cancer. Oncol Lett. 10:51–60. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang JL, Wu DW, Cheng ZZ, Han WZ, Xu SW and Sun NN: Expression of high mobility group box-B1 (HMGB-1) and matrix metalloproteinase-9 (MMP-9) in non-small cell lung cancer (NSCLC). Asian Pac J Cancer Prev. 15:4865–4869. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Zhou Y, Liu Q, Luo JM, Qing M, Tang XY, Yao XS, Wang CH and Wen ZK: CXCR4/SDF-1 pathway is crucial for TLR9 agonist enhanced metastasis of human lung cancer cell. Biochem Biophys Res Commun. 382:571–576. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Fei G, Liu Z, Li Q, Xu Z and Ren T: HMGB1 was a pivotal synergistic effecor for CpG oligonucleotide to enhance the progression of human lung cancer cells. Cancer Biol Ther. 13:727–736. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu PL, Tsai JR, Hwang JJ, Chou SH, Cheng YJ, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH and Chong IW: High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am J Respir Cell Mol Biol. 43:530–538. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gribar SC, Richardson WM, Sodhi CP and Hackam DJ: No longer an innocent bystander: Epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med. 14:645–659. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tör M and Billiar T: The grateful dead: Damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 220:60–81. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kumagai Y, Takeuchi O and Akira S: Pathogen recognition by innate receptors. J Infect Chemother. 14:86–92. 2008. View Article : Google Scholar : PubMed/NCBI | |
Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G and Bianchi ME: HMGB1 as biomarker and drug target. Pharmacol Res. 111:534–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, et al: HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 462:99–103. 2009. View Article : Google Scholar : PubMed/NCBI | |
Beaulieu LM, Lin E, Morin KM, Tanriverdi K and Freedman JE: Regulatory effects of TLR2 on megakaryocytic cell function. Blood. 117:5963–5974. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin E, Freedman JE and Beaulieu LM: Innate immunity and toll-like receptor antagonists: A potential role in the treatment of cardiovascular diseases. Cardiovasc Ther. 27:117–123. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dasu MR, Devaraj S, Park S and Jialal I: Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 33:861–868. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Sohn E, Kim CS, Jo K and Kim JS: The role of high-mobility group box-1 protein in the development of diabetic nephropathy. Am J Nephrol. 33:524–529. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh B, Biswas I, Bhagat S, Kumari Surya S and Khan GA: HMGB1 facilitates hypoxia-induced vWF upregulation through TLR2-MYD88-SP1 pathway. Eur J Immunol. 46:2388–2400. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Yang J, Wang W, Zhao W, Peng F, Xiang Y, Chen G, Chen T, Chai C, Zheng S, et al: HMGB1-promoted and TLR2/4-dependent NK cell maturation and activation take part in rotavirus-induced murine biliary atresia. PLoS Pathog. 10:e10040112014. View Article : Google Scholar : PubMed/NCBI | |
Conti L, Lanzardo S, Arigoni M, Antonazzo R, Radaelli E, Cantarella D, Calogero RA and Cavallo F: The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27:4731–4744. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yang N, Wang T, Dai B and Shang Y: Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-κB signaling pathway. Mol Med Rep. 17:2915–2920. 2018.PubMed/NCBI | |
Gunasekaran MK, Virama-Latchoumy AL, Girard AC, Planesse C, Guérin-Dubourg A, Ottosson L, Andersson U, Césari M, Roche R and Hoareau L: TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte. Adipocyte. 5:384–388. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu LX, Yan L, Yang W, Wu FQ, Ling Y, Chen SZ, Tang L, Tan YX, Cao D, Wu MC, et al: Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat Commun. 5:52562014. View Article : Google Scholar : PubMed/NCBI | |
Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, et al: A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 110:1970–1981. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K and Akira S: A Toll-like receptor recognizes bacterial DNA. Nature. 408:740–745. 2000. View Article : Google Scholar : PubMed/NCBI | |
Su Z, Wang T, Zhu H, Zhang P, Han R, Liu Y, Ni P, Shen H, Xu W and Xu H: HMGB1 modulates Lewis cell autophagy and promotes cell survival via RAGE-HMGB1-Erk1/2 positive feedback during nutrient depletion. Immunobiology. 220:539–544. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ahmad-Nejad P, Häcker H, Rutz M, Bauer S, Vabulas RM and Wagner H: Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol. 32:1958–1968. 2002. View Article : Google Scholar : PubMed/NCBI | |
Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T and Golenbock DT: TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 5:190–198. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S and Wagner H: Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 192:595–600. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL and Xu L: Functional expression of TLR9 is associated to the metastatic potential of human lung cancer cell: Functional active role of TLR9 on tumor metastasis. Cancer Biol Ther. 6:1704–1709. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun KK, Ji C, Li X, Zhang L, Deng J, Zhong N and Wu XY: Overexpression of high mobility group protein B1 correlates with the proliferation and metastasis of lung adenocarcinoma cells. Mol Med Rep. 7:1678–1682. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Yang F, Li J, Zheng Y, Yu W, Yang L and Ren X: Soluble Toll-like receptor 4 is a potential serum biomarker in non-small cell lung cancer. Oncotarget. 7:40106–40114. 2016.PubMed/NCBI | |
Xia Q, Xu J, Chen H, Gao Y, Gong F, Hu L and Yang L: Association between an elevated level of HMGB1 and non-small-cell lung cancer: A meta-analysis and literature review. Onco Targets Ther. 9:3917–3923. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jakubowska K, Naumnik W, Niklinska W and Chyczewska E: Clinical Significance of HMGB-1 and TGF-β level in serum and BALF of advanced Non-small cell lung cancer. Adv Exp Med Biol. 852:49–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ III and Lotze MT: Endogenous HMGB1 regulates autophagy. J Cell Biol. 190:881–892. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Zeh HJ, Lotze MT and Tang D: The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT and Zeh HJ III: The receptor for advanced glycation End-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Signal. 15:2175–2184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P, Bierhaus A, Lotze MT and Zeh HJ: The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 17:666–676. 2010. View Article : Google Scholar : PubMed/NCBI | |
Copetti T, Bertoli C, Dalla E, Demarchi F and Schneider C: p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol. 29:2594–2608. 2009. View Article : Google Scholar : PubMed/NCBI | |
Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ III, Li L, et al: p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72:1996–2005. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang H and Wang J: Expression of HMGB1 and NF-κB p65 and its significance in non-small cell lung cancer. Contemp Oncol (Pozn). 17:350–355. 2013.PubMed/NCBI | |
Zhang C, Ge S, Hu C, Yang N and Zhang J: MiRNA-218, a new regulator of HMGB1, suppresses cell migration and invasion in non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai). 45:1055–1061. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yao S, Zhao T and Jin H: Expression of MicroRNA-325-3p and its potential functions by targeting HMGB1 in non-small cell lung cancer. Biomed Pharmacother. 70:72–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiao P and Liu WL: MiR-142-3p functions as a potential tumor suppressor directly targeting HMGB1 in non-small-cell lung carcinoma. Int J Clin Exp Pathol. 8:10800–10807. 2015.PubMed/NCBI | |
Liu Y, Hu X, Xia D and Zhang S: MicroRNA-181b is downregulated in non-small cell lung cancer and inhibits cell motility by directly targeting HMGB1. Oncol Lett. 12:4181–4186. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Luo J, Li Y, Jia M, Wang Y, Huang Y and Ke S: HMGB1 induces human non-small cell lung cancer cell motility by activating integrin αvβ3/FAK through TLR4/NF-κB signaling pathway. Biochem Biophys Res Commun. 480:522–527. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stordal B and Davey M: Understanding cisplatin resistance using cellular models. IUBMB Life. 59:696–699. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang Y and Xian L: The association between the ERCC1/2 polymorphisms and the clinical outcomes of the platinum-based chemotherapy in non-small cell lung cancer (NSCLC): A systematic review and meta-analysis. Tumour Biol. 35:2905–2921. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li XP, Yin JY, Zhang Y, He H, Qian CY, Chen J, Zheng Y, Smieszkol K, Fu YL, et al: Association of HMGB1 and HMGB2 genetic polymorphisms with lung cancer chemotherapy response. Clin Exp Pharmacol Physiol. 41:408–415. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spira A and Ettinger DS: Multidisciplinary management of lung cancer. N Engl J Med. 350:379–392. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kelland L: The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Chen D, Huang J, Wang R, Feng B, Song H and Chen L: HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma. Mol Cancer. 13:1652014. View Article : Google Scholar : PubMed/NCBI | |
Krynetskaia NF, Phadke MS, Jadhav SH and Krynetskiy EY: Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage. Mol Cancer Ther. 8:864–872. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aranda F, Bloy N, Galluzzi L, Kroemer G and Senovilla L: Vitamin B6 improves the immunogenicity of cisplatin-induced cell death. Oncoimmunology. 3:e9556852014. View Article : Google Scholar : PubMed/NCBI | |
Amann R and Peskar BA: Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol. 447:1–9. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhu S, Zhou R, Li W and Sama AE: Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med. 10:e322008. View Article : Google Scholar : PubMed/NCBI | |
Lim SC, Kim SM, Choi JE, Kim CH, Duong HQ, Han SI and Kang HS: Sodium salicylate switches glucose depletion-induced necrosis to autophagy and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. Oncol Rep. 19:1165–1171. 2008.PubMed/NCBI | |
Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R, Czura CJ, Fink MP and Tracey KJ: Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA. 99:12351–12356. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhou RR, Kuang XY, Huang Y, Li N, Zou MX, Tang DL and Fan XG: Potential role of High mobility group box 1 in hepatocellular carcinoma. Cell Adh Migr. 8:493–498. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Guo R, Luo X and Zhou L: Ethyl pyruvate ameliorates experimental colitis in mice by inhibiting the HMGB1-Th17 and Th1/Tc1 responses. Int Immunopharmacol. 29:454–461. 2015. View Article : Google Scholar : PubMed/NCBI |