1
|
Kim JJ and Sefton EC: The role of
progesterone signaling in the pathogenesis of uterine leiomyoma.
Mol Cell Endocrinol. 358:223–231. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Borahay MA, Al-Hendy A, Kilic GS and
Boehning D: Signaling pathways in leiomyoma: Understanding
pathobiology and implications for therapy. Mol Med. 21:242–256.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ura B, Scrimin F, Monasta L, Radillo O and
Ricci G: Association between up-regulated expression proteins and
circulating steroidal hormones in leiomyoma. Med Hypotheses.
85:5152015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Leppert PC, Catherino WH and Segars JH: A
new hypothesis about the origin of uterine fibroids based on gene
expression profiling with microarrays. Am J Obstet Gynecol.
195:415–420. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Calderwood SK and Gong J: Molecular
chaperones in mammary cancer growth and breast tumor therapy. J
Cell Biochem. 113:1096–1103. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pratt WB and Toft DO: Regulation of
signaling protein function and trafficking by the hsp90/hsp70-based
chaperone machinery. Exp Biol Med (Maywood). 228:111–133. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ura B, Scrimin F, Zanconati F, Arrigoni G,
Monasta L, Romano A, Banco R, Zweyer M, Milani D and Ricci G:
Two-dimensional gel electrophoresis analysis of the leiomyoma
interstitial fluid reveals altered protein expression with a
possible involvement in pathogenesis. Oncol Rep. 33:2219–2226.
2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ura B, Scrimin F, Franchin C, Arrigoni G,
Licastro D, Monasta L and Ricci G: Identification of proteins with
different abundance associated with cell migration and
proliferation in leiomyoma interstitial fluid by proteomics. Oncol
Lett. 13:3912–3920. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ura B, Scrimin F, Arrigoni G, Athanasakis
E, Aloisio M, Monasta L and Ricci G: Abnormal expression of
leiomyoma cytoskeletal proteins involved in cell migration. Oncol
Rep. 35:3094–3100. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ura B, Scrimin F, Arrigoni G, Franchin C,
Monasta L and Ricci G: A proteomic approach for the identification
of up-regulated proteins involved in the metabolic process of the
leiomyoma. Int J Mol Sci. 17:5402016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Carcoforo P, Ura B, Mischiati C,
Squerzanti M, Lanzara V, Cervellati C, Calza R, De Laureto PP,
Frare E, Portinari M, et al: Comparative proteomic analysis of
ductal breast carcinoma demonstrates an altered expression of
chaperonins and cytoskeletal proteins. Mol Med Rep. 7:1700–1704.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mischiati C, Ura B, Roncoroni L, Elli L,
Cervellati C, Squerzanti M, Conte D, Doneda L, de Laureto Polverino
P, de Franceschi G, et al: Changes in protein expression in two
cholangiocarcinoma cell lines undergoing formation of multicellular
tumor spheroids in vitro. PLoS One. 10:e01189062015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ghosh JC, Dohi T, Kang BH and Altieri DC:
Hsp60 regulation of tumor cell apoptosis. J Biol Chem.
283:5188–5194. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Santagata S, Hu R, Lin NU, Mendillo ML,
Collins LC, Hankinson SE, Schnitt SJ, Whitesell L, Tamimi RM,
Lindquist S and Ince TA: High levels of nuclear heat-shock factor 1
(HSF1) are associated with poor prognosis in breast cancer. Proc
Natl Acad Sci USA. 108:18378–18383. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ciocca DR and Calderwood SK: Heat shock
proteins in cancer: Diagnostic, prognostic, predictive, and
treatment implications. Cell Stress Chaperones. 10:86–103. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Roh SH, Kasembeli M, Bakthavatsalam D,
Chiu W and Tweardy DJ: Contribution of the type II chaperonin,
TRiC/CCT, to oncogenesis. Int J Mol Sci. 16:26706–26720. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Blomberg A, Blomberg L, Norbeck J, Fey SJ,
Larsen PM, Larsen M, Roepstorff P, Degand H, Boutry M, Posch A, et
al: Interlaboratory reproducibility of yeast protein patterns
analyzed by immobilized pH gradient two-dimensional gel
electrophoresis. Electrophoresis. 16:1935–1945. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lemeer S, Gholami AM, Wu Z and Kuster B:
Quantitative proteome profiling of human myoma and myometrium
tissue reveals kinase expression signatures with potential for
therapeutic intervention. Proteomics. 15:356–364. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lu YC, Weng WC and Lee H: Functional roles
of calreticulin in cancer biology. Biomed Res Int. 2015:5265242015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Schardt JA, Mueller BU and Pabst T:
Activation of the unfolded protein response in human acute myeloid
leukemia. Methods Enzymol. 489:227–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Roberts E, Cossigny DA and Quan GM: The
role of vascular endothelial growth factor in metastatic prostate
cancer to the skeleton. Prostate Cancer. 2013:4183402013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Miyake H, Hara I, Arakawa S and Kamidono
S: Stress protein GRP78 prevents apoptosis induced by calcium
ionophore, ionomycin, but not by glycosylation inhibitor,
tunicamycin, in human prostate cancer cells. J Cell Biochem.
77:396–408. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang K and Kaufman RJ: Signaling the
unfolded protein response from the endoplasmic reticulum. J Biol
Chem. 279:25935–25938. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pressinotti NC, Klocker H, Schäfer G, Luu
VD, Ruschhaupt M, Kuner R, Steiner E, Poustka A, Bartsch G and
Sültmann H: Differential expression of apoptotic genes PDIA3 and
MAP3K5 distinguishes between low- and high-risk prostate cancer.
Mol Cancer. 8:1302009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Arrigo AP, Simon S, Gibert B, Kretz-Remy
C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C and
Vicart P: Hsp27 (HspB1) and alphaB-crystallin (HspB5) as
therapeutic targets. FEBS Lett. 581:3665–3674. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shiota M, Bishop JL, Nip KM, Zardan A,
Takeuchi A, Cordonnier T, Beraldi E, Bazov J, Fazli L, Chi K, et
al: Hsp27 regulates epithelial mesenchymal transition, metastasis,
and circulating tumor cells in prostate cancer. Cancer Res.
73:3109–3119. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Arrigo AP and Gibert B: HspB1, HspB5 and
HspB4 in human cancers: Potent oncogenic role of some of their
client proteins. Cancers (Basel). 6:333–365. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Golembieski WA, Thomas SL, Schultz CR,
Yunker CK, McClung HM, Lemke N, Cazacu S, Barker T, Sage EH, Brodie
C and Rempel SA: HSP27 mediates SPARC-induced changes in glioma
morphology, migration, and invasion. Glia. 56:1061–1075. 2008.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Jeong YJ, Noh EM, Lee YR, Yu HN, Jang KY,
Lee SJ, Kim J and Kim JS: 17beta-estradiol induces up-regulation of
PTEN and PPARgamma in leiomyoma cells, but not in normal cells. Int
J Oncol. 36:921–927. 2010.PubMed/NCBI
|