1
|
Yu VZ, Ko JM, Law S, Wang LD and Lung ML:
Abstract 1158: Differential expression and functional impact of the
alternatively spliced transcripts of extracellular matrix protein 1
in esophageal squamous cell carcinoma. Cancer Res. 76:11582016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yan S, Zhou C, Zhang W, Zhang G, Zhao X,
Yang S, Wang Y, Lu N, Zhu H and Xu N: β-catenin/TCF pathway
upregulates STAT3 expression in human esophageal squamous cell
carcinoma. Cancer Lett. 271:85–97. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang H, Lai R, Li E and Xu L: Abstract
3507: STAT3beta suppresses tumorigenesis via modulating the
phosphorylation dynamics and transcription activity of STAT3alpha
in esophageal squamous cell carcinoma. Cancer Res. 74 19
Suppl:S3507. 2014. View Article : Google Scholar
|
4
|
Yao R, Chen Z, Zhou C, Luo M, Shi X, Li J,
Gao Y, Zhou F, Pu J, Sun H and He J: Xerophilusin B induces cell
cycle arrest and apoptosis in esophageal squamous cell carcinoma
cells and does not cause toxicity in nude mice. J Nat Prod.
78:10–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen YK, Tung CW, Lee JY, Hung YC, Lee CH,
Chou SH, Lin HS, Wu MT and Wu IC: Plasma matrix metalloproteinase 1
improves the detection and survival prediction of esophageal
squamous cell carcinoma. Sci Rep. 6:300572016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee JJ, Natsuizaka M, Ohashi S, Wong GS,
Takaoka M, Michaylira CZ, Budo D, Tobias JW, Kanai M, Shirakawa Y,
et al: Hypoxia activates the cyclooxygenase-2-prostaglandin E
synthase axis. Carcinogenesis. 31:427–434. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu N, Clifford RJ, Yang HH, Wang C,
Goldstein AM, Ding T, Taylor PR and Lee MP: Genome wide analysis of
DNA copy number neutral loss of heterozygosity (CNNLOH) and its
relation to gene expression in esophageal squamous cell carcinoma.
BMC Genomics. 11:5762010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li X: An aggregate function method for
nonlinear programming. Sci In China (A). 34:1467–1473. 1991.
|
10
|
Altman NS: An introduction to kernel and
nearest-neighbor nonparametric regression. American Statist.
46:175–185. 1992. View Article : Google Scholar
|
11
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Smyth GK: Linear models and empirical
bayes methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. 3:Article32004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J Royal Stat Soc (Methodological). 57:289–300.
1995.
|
14
|
Kohl M, Wiese S and Warscheid B:
Cytoscape: Software for visualization and analysis of biological
networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rücker G and Rücker C: On using the
adjacency matrix power method for perception of symmetry and for
isomorphism testing of highly intricate graphs. J Chem Inf Comput
Sci. 31:123–126. 1991. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang J, Li M, Chen J and Pan Y: A fast
hierarchical clustering algorithm for functional modules discovery
in protein interaction networks. IEEE/ACM Trans Comput Biol
Bioinform. 8:607–620. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nepusz T, Yu H and Paccanaro A: Detecting
overlapping protein complexes in protein-protein interaction
networks. Nat Methods. 9:471–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Scheffner M, Nuber U and Huibregtse JM:
Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin
thioester cascade. Nature. 373:81–83. 1995. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jesenberger V and Jentsch S: Deadly
encounter: Ubiquitin meets apoptosis. Nat Rev Mol Cell Biol.
3:112–121. 2002. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Lin J, Raoof DA, Wang Z, Lin MY, Thomas
DG, Greenson JK, Giordano TJ, Orringer MB, Chang AC, Beer DG and
Lin L: Expression and effect of inhibition of the
ubiquitin-conjugating enzyme E2C on esophageal adenocarcinoma.
Neoplasia. 8:1062–1071. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ieta K, Ojima E, Tanaka F, Nakamura Y,
Haraguchi N, Mimori K, Inoue H, Kuwano H and Mori M: Identification
of overexpressed genes in hepatocellular carcinoma, with special
reference to ubiquitin-conjugating enzyme E2C gene expression. Int
J Cancer. 121:33–38. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rajkumar T, Sabitha K, Vijayalakshmi N,
Shirley S, Bose MV, Gopal G and Selvaluxmy G: Identification and
validation of genes involved in cervical tumourigenesis. BMC
Cancer. 11:802011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao L, Jiang L, Wang L, He J, Yu H, Sun
G, Chen J, Xiu Q and Li B: UbcH10 expression provides a useful tool
for the prognosis and treatment of non-small cell lung cancer. J
Cancer Res Clin Oncol. 138:1951–1961. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao ZK, Wu WG, Chen L, Dong P, Gu J, Mu
JS, Yang JH and Liu YB: Expression of UbcH10 in pancreatic ductal
adenocarcinoma and its correlation with prognosis. Tumor Biol.
34:1473–1477. 2013. View Article : Google Scholar
|
25
|
McLean JR, Chaix D, Ohi MD and Gould KL:
State of the APC/C: Organization, function, and structure. Crit Rev
Biochem Mol Biol. 46:118–136. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kidokoro T, Tanikawa C, Furukawa Y,
Katagiri T, Nakamura Y and Matsuda K: CDC20, a potential cancer
therapeutic target, is negatively regulated by p53. Oncogene.
27:1562–1571. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Smolders L and Teodoro JG: Targeting the
anaphase promoting complex: Common pathways for viral infection and
cancer therapy. Expert Opin Ther Targets. 15:767–780. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yamabuki T, Daigo Y, Kato T, Hayama S,
Tsunoda T, Miyamoto M, Ito T, Fujita M, Hosokawa M, Kondo S and
Nakamura Y: Genome-wide gene expression profile analysis of
esophageal squamous cell carcinomas. Int J Oncol. 28:1375–1384.
2006.PubMed/NCBI
|
29
|
Zinovyeva MV, Monastyrskaya GS, Kopantzev
EP, Vinogradova TV, Kostina MB, Sass AV, Filyukova OB, Uspenskaya
NY, Sukhikh GT and Sverdlov ED: Identification of some human genes
oppositely regulated during esophageal squamous cell carcinoma
formation and human embryonic esophagus development. Dis Esophagus.
23:260–270. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jin Z, Mori Y, Yang J, Sato F, Ito T,
Cheng Y, Paun B, Hamilton JP, Kan T, Olaru A, et al:
Hypermethylation of the nel-like 1 gene is a common and early event
and is associated with poor prognosis in early-stage esophageal
adenocarcinoma. Oncogene. 26:6332–6340. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wada S, Noguchi T, Takeno S and Kawahara
K: PIK3CA and TFRC located in 3q are new prognostic factors in
esophageal squamous cell carcinoma. Ann Surg Oncol. 13:961–966.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pobbati AV and Hong W: Emerging roles of
TEAD transcription factors and its coactivators in cancers. Cancer
Biol Ther. 14:390–398. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Muramatsu T, Imoto I, Matsui T, Kozaki K,
Haruki S, Sudol M, Shimada Y, Tsuda H, Kawano T and Inazawa J: YAP
is a candidate oncogene for esophageal squamous cell carcinoma.
Carcinogenesis. 32:389–398. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Uchikado Y, Inoue H, Haraguchi N, Mimori
K, Natsugoe S, Okumura H, Aikou T and Mori M: Gene expression
profiling of lymph node metastasis by oligomicroarray analysis
using laser microdissection in esophageal squamous cell carcinoma.
Int J Oncol. 29:1337–1347. 2006.PubMed/NCBI
|
35
|
Shen Y, Tantai J and Zhao H: Ranking
candidate genes of esophageal squamous cell carcinomas based on
differentially expressed genes and the topological properties of
the co-expression network. Eur J Med Res. 19:522014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Boult J, Roberts K, Brookes MJ, Hughes S,
Bury JP, Cross SS, Anderson GJ, Spychal R, Iqbal T and Tselepis C:
Overexpression of cellular iron import proteins is associated with
malignant progression of esophageal adenocarcinoma. Clin Cancer
Res. 14:379–387. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hu YC, Lam KY, Law S, Wong J and
Srivastava G: Identification of differentially expressed genes in
esophageal squamous cell carcinoma (ESCC) by cDNA expression array:
Overexpression of Fra-1, Neogenin, Id-1, and CDC25B genes in ESCC.
Clin Cancer Res. 7:2213–2221. 2001.PubMed/NCBI
|
38
|
Luo A, Kong J, Hu G, Liew CC, Xiong M,
Wang X, Ji J, Wang T, Zhi H, Wu M and Liu Z: Discovery of
Ca2+-relevant and differentiation-associated genes downregulated in
esophageal squamous cell carcinoma using cDNA microarray. Oncogene.
23:1291–1299. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mimori K, Shiraishi T, Mashino K, Sonoda
H, Yamashita K, Yoshinaga K, Masuda T, Utsunomiya T, Alonso MA,
Inoue H and Mori M: MAL gene expression in esophageal cancer
suppresses motility, invasion and tumorigenicity and enhances
apoptosis through the Fas pathway. Oncogene. 22:3463–3471. 2003.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Dandara C, Li DP, Walther G and Parker MI:
Gene-environment interaction: The role of SULT1A1 and CYP3A5
polymorphisms as risk modifiers for squamous cell carcinoma of the
oesophagus. Carcinogenesis. 27:791–797. 2006. View Article : Google Scholar : PubMed/NCBI
|