1
|
Creasman WT and Miller DS: Adenocarcinoma
of the uterine corpusClinical Gynecologic Oncology. Elsevier;
Philadelphia, PA: pp. 141–174. 2012, View Article : Google Scholar : PubMed/NCBI
|
2
|
Tjalma WA, Van Waes TR, Van den Eeden LE
and Bogers JJ: Role of human papillomavirus in the carcinogenesis
of squamous cell carcinoma and adenocarcinoma of the cervix. Best
Pract Res Clin Obstet Gynaecol. 19:469–483. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Martin CM, Astbury K, McEvoy L, O'Toole S,
Sheils O and O'Leary JJ: Gene expression profiling in cervical
cancer: Identification of novel markers for disease diagnosis and
therapy. Methods Mol Biol. 511:333–359. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang YX and Zhao YL: Pathogenic Network
analysis predicts candidate genes for cervical cancer. Comput Math
Methods Med. 2016:31860512016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tewari KS: PRO: Patients with
metastatic/recurrent cervical cancer should be treated with
cisplatin plus paclitaxel. Clinical Ovarian Cancer. 4:90–93. 2011.
View Article : Google Scholar
|
6
|
Moore DH, Tian C, Monk BJ, Long HJ, Omura
GA and Bloss JD: Prognostic factors for response to cisplatin-based
chemotherapy in advanced cervical carcinoma: A Gynecologic Oncology
Group Study. Gynecol Oncol. 116:44–49. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hu X, Schwarz JK, Lewis JS Jr, Huettner
PC, Rader JS, Deasy JO, Grigsby PW and Wang X: A microRNA
expression signature for cervical cancer prognosis. Cancer Res.
70:1441–1448. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Itahana Y, Han R, Barbier S, Lei Z, Rozen
S and Itahana K: The uric acid transporter SLC2A9 is a direct
target gene of the tumor suppressor p53 contributing to antioxidant
defense. Oncogene. 34:1799–1810. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Berezikov E, Cuppen E and Plasterk RH:
Approaches to microRNA discovery. Nat Genet. 38 Suppl:S2–S7. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jay C, Nemunaitis J, Chen P, Fulgham P and
Tong AW: miRNA profiling for diagnosis and prognosis of human
cancer. DNA Cell Biol. 26:293–300. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu SL, Chen HY, Chang GC, Chen CY, Chen
HW, Singh S, Cheng CL, Yu CJ, Lee YC, Chen HS, et al: MicroRNA
signature predicts survival and relapse in lung cancer. Cancer
Cell. 13:48–57. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Le TD, Zhang J, Liu L and Li J: Ensemble
methods for miRNA target prediction from expression data. PLoS One.
10:e01316272015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nahler G: Pearson correlation coefficient.
Dictionary of Pharmaceutical Med. 132:2009.
|
17
|
Maathuis MH, Kalisch M and Bühlmann P:
Estimating high-dimensional intervention effects from observational
data. Annals Statist. 37:3133–3164. 2009. View Article : Google Scholar
|
18
|
Maathuis MH, Colombo D, Kalisch M and
Bühlmann P: Predicting causal effects in large-scale systems from
observational data. Nat Methods. 7:247–248. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Friedman J, Hastie T and Tibshirani R:
Glmnet: Lasso and Elastic-Net Regularized Generalized Linear
Models. R package version 1.9–5R Foundation for Statistical
Computing. Vienna, Austria: 2013
|
20
|
Marbach D, Costello JC, Küffner R, Vega
NM, Prill RJ, Camacho DM and Allison KR: DREAM5 Consortium, Kellis
M, Collins JJ and Stolovitzky G: Wisdom of crowds for robust gene
network inference. Nat Methods. 9:796–804. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pio G, Malerba D, D'Elia D and Ceci M:
Integrating microRNA target predictions for the discovery of gene
regulatory networks: A semi-supervised ensemble learning approach.
BMC Bioinformatics. 15 Suppl 1:S42014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y and Verbeek FJ: Comparison and
integration of target prediction algorithms for microRNA studies. J
Integr Bioinform. 7:2010.doi: 10.2390/biecoll-jib-2010-127.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin
YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, et al: miRTarBase
2016: Updates to the experimentally validated miRNA-target
interactions database. Nucleic Acids Res. 44:D239–D247. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Vergoulis T, Vlachos IS, Alexiou P,
Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N,
Dalamagas T and Hatzigeorgiou AG: TarBase 6.0: Capturing the
exponential growth of miRNA targets with experimental support.
Nucleic Acids Res. 40:(Database issue). D222–D229. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xiao F, Zuo Z, Cai G, Kang S, Gao X and Li
T: miRecords: An integrated resource for microRNA-target
interactions. Nucleic Acids Res. 37:(Database issue). D105–D110.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dweep H, Gretz N and Sticht C: miRWalk
database for miRNA-target interactions. Methods Mol Biol.
1182:289–305. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu Y, Qiu P and Ji Y: TCGA-assembler:
Open-source software for retrieving and processing TCGA data. Nat
Methods. 11:599–600. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Russell N: Complexity of control of Borda
count elections. Rochester Institute of Technology. 2007.http://scholarworks.rit.edu/theses/332
|
30
|
Le TD, Liu L, Zhang J, Liu B and Li J:
From miRNA regulation to miRNA-TF co-regulation: Computational
approaches and challenges. Brief Bioinform. 16:475–496. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hsu SD, Tseng YT, Shrestha S, Lin YL,
Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, et al:
miRTarBase update 2014: An information resource for experimentally
validated miRNA-target interactions. Nucleic Acids Res.
42:(Database issue). D78–D85. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Papadopoulos GL, Reczko M, Simossis VA,
Sethupathy P and Hatzigeorgiou AG: The database of experimentally
supported targets: A functional update of TarBase. Nucleic Acids
Res. 37:(Database issue). D155–D158. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ford G, Xu Z, Gates A, Jiang J and Ford
BD: Expression analysis systematic explorer (EASE) analysis reveals
differential gene expression in permanent and transient focal
stroke rat models. Brain Res. 1071:226–236. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Speed T: Mathematics. A correlation for
the 21st century. Science. 334:1502–1503. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Le TD, Liu L, Tsykin A, Goodall GJ, Liu B,
Sun BY and Li J: Inferring microRNA-mRNA causal regulatory
relationships from expression data. Bioinformatics. 29:765–771.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Drake JM, Friis RR and Dharmarajan AM: The
role of sFRP4, a secreted frizzled-related protein, in ovulation.
Apoptosis. 8:389–397. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang D, Yu B, Deng Y, Sheng W, Peng Z,
Qin W and Du X: SFRP4 was overexpressed in colorectal carcinoma. J
Cancer Res Clin Oncol. 136:395–401. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chung MT, Sytwu HK, Yan MD, Shih YL, Chang
CC, Yu MH, Chu TY, Lai HC and Lin YW: Promoter methylation of SFRPs
gene family in cervical cancer. Gynecol Oncol. 112:301–306. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Brebi P, Hoffstetter R, Andana A, Ili CG,
Saavedra K, Viscarra T, Retamal J, Sanchez R and Roa JC: Evaluation
of ZAR1 and SFRP4 methylation status as potentials biomarkers for
diagnosis in cervical cancer: Exploratory study phase I.
Biomarkers. 19:181–188. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Turrin NP and Plata-Salamán CR:
Cytokine-cytokine interactions and the brain. Brain Res Bull.
51:3–9. 2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
El Hassan Abou M, Huang K, Eswara MB, Zhao
M, Song L, Yu T, Liu Y, Liu JC, McCurdy S, Ma A, et al: Cancer
cells Hijack PRC2 to modify multiple cytokine pathways. PLoS One.
10:e01264662015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Iman Al-Azwani Bs, Al Haddad A, Mohamoud
Y, Farouk S, Haytham S, Joel M and Thomas A: Rna-seq study of
muscle and adipose tissue in cancer patients with early cachexia.
Qatar Foundation Annual Research Conference, HBPP0326.
2014.https://doi.org/10.5339/qfarc.2014.HBPP0326
|
43
|
Mak CK, Chung GTY, Yip KYL, Ken KYT,
Sau-Dan L, Siu-Tim C, Sai-Wah T, Pierre B, Ka-Fai T and Kwok-Wai L:
Abstract 3425: Whole-transcriptome analyses of EBV-associated
nasopharyngeal carcinoma using next-generation transcriptome
sequencing. Cancer Res. 74:3425. 2014. View Article : Google Scholar
|
44
|
Thompson KJ, Tang X, Sun Z, Sinnwell JP,
Sicotte H, Mahoney DW, Hart S, Vedell PT, Barman B, Passow JEE, et
al: Molecular classification of triple negative breast cancer via
RNA-sequencing data (Abstract). Cancer Res. 74:55922014. View Article : Google Scholar
|