Tumor angiogenesis and anti‑angiogenic gene therapy for cancer (Review)
- Authors:
- Tinglu Li
- Guangbo Kang
- Tingyue Wang
- He Huang
-
Affiliations: Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China - Published online on: May 17, 2018 https://doi.org/10.3892/ol.2018.8733
- Pages: 687-702
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fan TP, Jaggar R and Bicknell R: Controlling the vasculature: Angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci. 16:57–66. 1995. View Article : Google Scholar : PubMed/NCBI | |
Folkman J and Shing Y: Angiogenesis. J Biol Chem. 267:10931–10934. 1992.PubMed/NCBI | |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Anti-angiogenesis: New concept for therapy of solid tumors. Ann Surg. 175:409–416. 1972. View Article : Google Scholar : PubMed/NCBI | |
Dimova I, Popivanov G and Djonov V: Angiogenesis in cancer-general pathways and their therapeutic implications. J BUON. 19:15–21. 2014.PubMed/NCBI | |
Ribatti D, Nico B, Crivellato E, Roccaro AM and Vacca A: The history of the angiogenic switch concept. Leukemia. 21:44–52. 2007. View Article : Google Scholar : PubMed/NCBI | |
Welti J, Loges S, Dimmeler S and Carmeliet P: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 123:3190–3200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D and Djonov V: Intussusceptive microvascular growth in tumors. Cancer Lett. 316:126–131. 2012. View Article : Google Scholar : PubMed/NCBI | |
Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC and Pezzella F: Vessel co-option in primary human tumors and metastases: An obstacle to effective anti-angiogenic treatment? Cancer Med. 2:427–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
de la Puente P, Muz B, Azab F and Azab AK: Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res. 19:3360–3368. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moschetta M, Mishima Y, Sahin I, Manier S, Glavey S, Vacca A, Roccaro AM and Ghobrial IM: Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta. 1846:26–39. 2014.PubMed/NCBI | |
Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV and Hendrix MJ: Tumor cell vasculogenic mimicry: From controversy to therapeutic promise. Am J Pathol. 181:1115–1125. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N and Adamis AP: Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 15:385–403. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mihicprobst D, Ikenberg K, Tinguely M, Schraml P, Behnke S, Seifert B, Civenni G, Sommer L, Moch H and Dummer R: Tumor cell plasticity and angiogenesis in human melanomas. PLoS One. 7:e335712012. View Article : Google Scholar : PubMed/NCBI | |
Liekens S, Schols D and Hatse S: CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des. 16:3903–3920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eelen G, de Zeeuw P, Simons M and Carmeliet P: Endothelial cell metabolism in normal and diseased vasculature. Circ Res. 116:1231–1244. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, Nathan MR, Wan E, Frentzas S, Schweiger T, et al: Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 241:362–374. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hlushchuk R, Riesterer O, Baum O, Wood J, Gruber G, Pruschy M and Djonov V: Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol. 173:1173–1185. 2008. View Article : Google Scholar : PubMed/NCBI | |
Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, Nathan M, Wotherspoon A, Gao ZH, Shi Y, et al: Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 22:1294–1302. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kerbel RS: Tumor angiogenesis: Past, present and the near future. Carcinogenesis. 21:505–515. 2000. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P: Developmental biology. Controlling the cellular brakes. Nature. 401:657–658. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dor Y, Porat R and Keshet E: Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol. 280:C1367–C1374. 2001. View Article : Google Scholar : PubMed/NCBI | |
Littlepage LE, Sternlicht MD, Rougier N, Phillips J, Gallo E, Yu Y, Williams K, Brenot A, Gordon JI and Werb Z: Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res. 70:2224–2234. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, et al: Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 394:485–490. 1998. View Article : Google Scholar : PubMed/NCBI | |
Maracle CX and Tas SW: Inhibitors of angiogenesis: Ready for prime time? Best Pract Res Clin Rheumatol. 28:637–649. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blancas AA, Wong LE, Glaser DE and McCloskey KE: Specialized tip/stalk-like and phalanx-like endothelial cells from embryonic stem cells. Stem Cells Dev. 22:1398–1407. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, et al: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 12:943–953. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD and Wiegand SJ: Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 104:3219–3224. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Fan F, Wang A, Zheng S and Lu Y: Dll4-Notch signaling in regulation of tumor angiogenesis. J Cancer Res Clin Oncol. 140:525–536. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pandya NM, Dhalla NS and Santani DD: Angiogenesis-a new target for future therapy. Vasc Pharmacol. 44:265–274. 2006. View Article : Google Scholar | |
Bergers G and Song S: The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 7:452–464. 2005. View Article : Google Scholar : PubMed/NCBI | |
Izzedine H, Ederhy S, Goldwasser F, Soria JC, Milano G, Cohen A, Khayat D and Spano JP: Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 20:807–815. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu SX, Xia ZS and Zhong YQ: Genetic therapy in pancreatic cancer. World J Gastroenterol. 20:13343–13368. 2014. View Article : Google Scholar : PubMed/NCBI | |
Edelstein ML, Abedi MR, Wixon J and Edelstein RM: Gene therapy clinical trials worldwide 1989–2004-an overview. J Gene Med. 6:597–602. 2004. View Article : Google Scholar : PubMed/NCBI | |
Edelstein ML, Abedi MR and Wixon J: Gene therapy clinical trials worldwide to 2007-an update. J Gene Med. 9:833–842. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ginn SL, Alexander IE, Edelstein ML, Abedi MR and Wixon J: Gene therapy clinical trials worldwide to 2012-an update. J Gene Med. 15:65–77. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ortiz R, Melguizo C, Prados J, Álvarez PJ, Caba O, Rodríguez-Serrano F, Hita F and Aránega A: New gene therapy strategies for cancer treatment: A review of recent patents. Recent Pat Anticancer Drug Discov. 7:297–312. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cao S, Cripps A and Wei MQ: New strategies for cancer gene therapy: progress and opportunities. Clin Exp Pharmacol Physiol. 37:108–114. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tseng SJ, Liao ZX, Kao SH, Zeng YF, Huang KY, Li HJ, Yang CL, Deng YF, Huang CF, Yang SC, et al: Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nat Commun. 6:64562015. View Article : Google Scholar : PubMed/NCBI | |
Gogiraju R, Steinbrecher JH, Lehnart SE, Kessel M, Dobbelstein M and Schaefer K: Importance of tumor suppressor gene p53-mediated endothelial cell apoptosis for cardiac angiogenesis and hypertrophy. Eur Heart J. 34 Suppl 1:S16162013. View Article : Google Scholar | |
Tazawa H, Kagawa S and Fujiwara T: Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther. 13:1569–1583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Prabha S, Sharma B and Labhasetwar V: Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice. Cancer Gene Ther. 19:530–537. 2012. View Article : Google Scholar : PubMed/NCBI | |
Teodoro JG, Evans SK and Green MR: Inhibition of tumor angiogenesis by p53: A new role for the guardian of the genome. J Mol Med (Berl). 85:1175–1186. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang QT, Liu H, Zhang ZZ and Huang WL: Advancement and prospects of tumor gene therapy. Chin J Cancer. 30:182–188. 2011. View Article : Google Scholar : PubMed/NCBI | |
El-Aneed A: An overview of current delivery systems in cancer gene therapy. J Control Release. 94:1–14. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ramsey JD, Vu HN and Pack DW: A top-down approach for construction of hybrid polymer-virus gene delivery vectors. J Control Release. 144:39–45. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lundstrom K: Alphavirus vectors as tools in neuroscience and gene therapy. Virus Res. 216:16–25. 2016. View Article : Google Scholar : PubMed/NCBI | |
LU Y, Yan M, Chen IS and Liang M: Viral vector nanocapsule for targeting gene therapy and its preparation. Journal. 2015. | |
Touchefeu Y, Harrington KJ, Galmiche JP and Vassaux G: Review article: Gene therapy, recent developments and future prospects in gastrointestinal oncology. Aliment Pharmacol Ther. 32:953–968. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liao ZK, Tsai KC, Wang HT, Tseng SH, Deng WP, Chen WS and Hwang LH: Sonoporation-mediated anti-angiogenic gene transfer into muscle effectively regresses distant orthotopic tumors. Cancer Gene Ther. 19:171–180. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Zhang P, Tian J, Zhou Z, Liu X, Wang D and Wang Z: A targeted ultrasound contrast agent carrying gene and cell-penetrating peptide: Preparation and gene transfection in vitro. Colloids Surf B Biointerfaces. 121:362–370. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yarmush ML, Golberg A, Serša G, Kotnik T and Miklavčič D: Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 16:295–320. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li W, Ma N and Steinhoff G: Non-viral gene delivery methods. Curr Pharm Biotechnol. 14:46–60. 2013. View Article : Google Scholar : PubMed/NCBI | |
Audouy SA, de Leij LF, Hoekstra D and Molema G: In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res. 19:1599–1605. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB, Weiden PL, Willey JS, Carey M, Branham DL, et al: Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: A phase i clinical trial. J Clin Oncol. 19:3422–3433. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wakabayashi T, Natsume A, Mizuno M, Fujii M, Shimato S and Yoshida J: A clinical trial of cationic liposomes containing interferon-b gene for patients with malignant glioma. Int Conf Brain Tumor Res Ther. 225. 2009. | |
Wang Y, Gao S, Ye WH, Yoon HS and Yang YY: Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater. 5:791–796. 2006. View Article : Google Scholar : PubMed/NCBI | |
Power AT and Bell JC: Cell-based delivery of oncolytic viruses: A new strategic alliance for a biological strike against cancer. Mol Ther. 15:660–665. 2007. View Article : Google Scholar : PubMed/NCBI | |
Muta M, Matsumoto G, Hiruma K, Nakashima E and Toi M: Study of cancer gene therapy using IL-12-secreting endothelial progenitor cells in a rat solid tumor model. Oncol Rep. 10:1765–1769. 2003.PubMed/NCBI | |
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR and Anderson DG: Non-viral vectors for gene-based therapy. Nat Rev Genet. 15:541–555. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim WJ, Yockman JW, Lee M, Jeong JH, Kim YH and Kim SW: Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release. 106:224–234. 2005. View Article : Google Scholar : PubMed/NCBI | |
Persano L, Crescenzi M and Indraccolo S: Anti-angiogenic gene therapy of cancer: Current status and future prospects. Mol Aspects Med. 28:87–114. 2007. View Article : Google Scholar : PubMed/NCBI | |
Albini A, Tosetti F, Li VW, Noonan DM and Li WW: Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol. 9:498–509. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morrison C: $1-million price tag set for Glybera gene therapy. Nat Biotechnol. 33:217–218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez D and Miessner P: Production of AAV vectors for gene therapy: A cost-effectiveness and risk assessment (unpublished PhD thesis). Department of Chemical Engineering and the MIT Sloan School of Management. 2016. | |
Chen HH, Kuliszewski MA, Rudenko D and Leong-Poi H: Pre-clinical evaluation of pro-angiogenic gene therapy by ultrasound-targeted microbubble destruction of vascular endothelial growth factor minicircle dna in an model of severe peripheral arterial disease in watanabe heritable hyperlipidemic rabbits. Can J Cardiol. 31 Suppl:S2822015. View Article : Google Scholar | |
Feng X: Angiogenesis and Antiangiogenesis Therapies: Spear and Shield of Pharmacotherapy. J Pharma Care Health Sys. 1:e1102014. | |
Ichihara E, Kiura K and Tanimoto M: Targeting angiogenesis in cancer therapy. Acta Med Okayama. 65:353–362. 2011.PubMed/NCBI | |
Trinchieri G: Interleukin-12: A cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 84:4008–4027. 1994.PubMed/NCBI | |
Trinchieri G: Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 13:251–276. 1995. View Article : Google Scholar : PubMed/NCBI | |
Duda DG, Sunamura M, Lozonschi L, Kodama T, Egawa S, Matsumoto G, Shimamura H, Shibuya K, Takeda K and Matsuno S: Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res. 60:1111–1116. 2000.PubMed/NCBI | |
Dias S, Boyd R and Balkwill F: IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer. 78:361–365. 1998. View Article : Google Scholar : PubMed/NCBI | |
Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ and Folkman J: Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst. 87:581–586. 1995. View Article : Google Scholar : PubMed/NCBI | |
Akiyama Y, Maruyama K, Watanabe M and Yamaguchi K: Retroviral-mediated IL-12 gene transduction into human CD34+ cell-derived dendritic cells. Int J Oncol. 21:509–514. 2002.PubMed/NCBI | |
Sunamura M, Sun L, Lozonschi L, Duda DG, Kodama T, Matsumoto G, Shimamura H, Takeda K, Kobari M, Hamada H and Matsuno S: The antiangiogenesis effect of interleukin 12 during early growth of human pancreatic cancer in SCID mice. Pancreas. 20:227–233. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhihua W, Xiumin Y, et al: The effect of il-12 on the proliferation in vitro and anti-tumor effects of cik cells in vivo and in vitro. J Pract Oncol. 21:212–215. 2007.(In Chinese). | |
Nguyen K, Koppolu B, Smith G, Ravindranathan S and Zaharoff D: Interleukin-12 elicits various responses of splenocytes from different mouse strains. J Immunol. 194 1 Suppl:(S49): 82015. | |
Portielje JE, Kruit WH, Schuler M, Beck J, Lamers CH, Stoter G, Huber C, de Boer-Dennert M, Rakhit A, Bolhuis RL and Aulitzky WE: Phase I study of subcutaneously administered recombinant human interleukin 12 in patients with advanced renal cell cancer. Clin Cancer Res. 5:3983–3989. 1999.PubMed/NCBI | |
Gollob JA, Mier JW, Veenstra K, McDermott DF, Clancy D, Clancy M and Atkins MB: Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: Ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res. 6:1678–1692. 2000.PubMed/NCBI | |
Hurteau JA, Blessing JA, DeCesare SL and Creasman WT: Evaluation of recombinant human interleukin-12 in patients with recurrent or refractory ovarian cancer: A gynecologic oncology group study. Gynecol Oncol. 82:7–10. 2001. View Article : Google Scholar : PubMed/NCBI | |
Daud A, Takamura KT, Diep T, Heller R and Pierce RH: Long-term overall survival from a phase I trial using intratumoral plasmid interleukin-12 with electroporation in patients with melanoma. J Transl Med. 13 Suppl 1:O32015. View Article : Google Scholar | |
Daud A, Algazi A, Ashworth M, Buljan M, Takamura KT, Diep T, Pierce RH and Bhatia S: Intratumoral electroporation of plasmid interleukin-12: Efficacy and biomarker analyses from a phase 2 study in melanoma (OMS-I100). J Transl Med. 13 Suppl 1:O112015. View Article : Google Scholar | |
Cutrera J, King G, Jones P, Kicenuik K, Gumpel E, Xia X and Li S: Safety and Efficacy of Tumor-Targeted Interleukin 12 Gene Therapy in Treated and Non-Treated, Metastatic Lesions. Curr Gene Ther. 15:44–55. 2014. View Article : Google Scholar | |
Lampreht U, Kamensek U, Stimac M, et al: Gene electrotransfer of canine interleukin 12 into canine melanoma cell lines. J Membr Biol. 248:909–917. 2015. View Article : Google Scholar : PubMed/NCBI | |
Markert JM, Cody JJ, Parker JN, Coleman JM, Price KH, Kern ER, Quenelle DC, Lakeman AD, Schoeb TR, Palmer CA, et al: Preclinical evaluation of a genetically engineered herpes simplex virus expressing interleukin-12. J Virol. 86:5304–5313. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kramer MG, Masner M, Casales E, Moreno M, Smerdou C and Chabalgoity JA: Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer. 15:6202015. View Article : Google Scholar : PubMed/NCBI | |
Koneru M, O'Cearbhaill R, Pendharkar S, Spriggs DR and Brentjens RJ: A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cance. J Transl Med. 13:1022015. View Article : Google Scholar : PubMed/NCBI | |
Poutou J, Bunuales M, Gonzalez-Aparicio M, Garcia-Aragoncillo E, Quetglas JI, Casado R, Bravo-Perez C, Alzuguren P and Hernandez-Alcoceba R: Safety and antitumor effect of oncolytic and helper-dependent adenoviruses expressing interleukin-12 variants in a hamster pancreatic cancer model. Gene Ther. 22:696–706. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li X, Liu H, Zhuang S, Yang J and Zhang F: Intranasal immunization with recombinant Lactococci carrying human papillomavirus E7 protein and mouse interleukin-12 DNA induces E7-specific antitumor effects in C57BL/6 mice. Oncol Lett. 7:576–582. 2014. View Article : Google Scholar : PubMed/NCBI | |
Freytag SO, Zhang Y and Siddiqui F: Preclinical toxicology of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for prostate cancer. Mol Ther Oncolytics. 2:pii: 15006. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cutrera J, King G, Jones P, Kicenuik K, Gumpel E, Xia X and Li S: Safe and effective treatment of spontaneous neoplasms with interleukin 12 electro-chemo-gene therapy. J Cell Mol Med. 19:664–675. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Lin JJ, Su Z, Goldstein N and Fisher P: Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 11:2477–2486. 1995.PubMed/NCBI | |
Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS and Fisher PB: The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA. 93:9160–9165. 1996. View Article : Google Scholar : PubMed/NCBI | |
Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC, Goldstein NI and Fisher PB: The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA. 95:14400–14405. 1998. View Article : Google Scholar : PubMed/NCBI | |
Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S, Branch CD, Zumstein L, Meyn RE, Roth JA, et al: Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 21:4558–4566. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sauane M, Gopalkrishnan RV, Lebedeva I, Mei MX, Sarkar D, Su ZZ, Kang DC, Dent P, Pestka S and Fisher PB: Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways. J Cell Physiol. 196:334–345. 2003. View Article : Google Scholar : PubMed/NCBI | |
Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, et al: MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget. 6:36928–36942. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Liu G, Xia L, Xiao X, Liu JC, Menezes ME, Das SK, Emdad L, Sarkar D, Fisher PB, et al: Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice. Oncotarget. 6:36943–36954. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Liu D, Wang J, Su Q, Zhou P, Liu J, Luan M and Xu X: Suppression effect of recombinant adenovirus vector containing hIL-24 on Hep-2 laryngeal carcinoma cells. Oncol Lett. 7:771–777. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Xu L, Yuan H, Zhang Y, Zhang X and Zhao D: Oncolytic adenovirus-mediated mda-7/IL-24 expression suppresses osteosarcoma growth and enhances sensitivity to doxorubicin. Mol Med Rep. 12:6358–6364. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khodadad M, Hosseini SY, Shenavar F, Erfani N, Bina S, Ahmadian S, Fattahi MR and Hajhosseini R: Construction of expressing vectors including melanoma differentiation-associated gene-7 (mda-7) fused with the RGD sequences for better tumor targeting. Iran J Basic Med Sci. 18:780–787. 2015.PubMed/NCBI | |
O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH and Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 79:315–328. 1994. View Article : Google Scholar : PubMed/NCBI | |
Wahl ML, Moser TL and Pizzo SV: Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res. 59:73–104. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Jin G, Nie X, Mi R, Zhu G, Jia W and Liu F: Enhanced antitumor efficacy of an oncolytic herpes simplex virus expressing an endostatin-angiostatin fusion gene in human glioblastoma stem cell xenografts. PLoS One. 9:e958722014. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Su W, Jin G, Xu F, Hao S, Guan F, Jia W and Liu F: Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro. Brain Res. 1390:59–69. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tysome JR, Wang P, Alusi G, Briat A, Gangeswaran R, Wang J, Bhakta V, Fodor I, Lemoine NR and Wang Y: Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: An oncolytic virus superior to dl1520 (ONYX-015) for human head and neck cancer. Hum Gene Ther. 22:1101–1108. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hutzen B, Bid HK, Houghton PJ, Pierson CR, Powell K, Bratasz A, Raffel C and Studebaker AW: Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer. 14:2062014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu YH, Lee SJ, Gardner TA, Jeng MH and Kao C: Prostate-restricted replicative adenovirus expressing human endostatin-angiostatin fusion gene exhibiting dramatic antitumor efficacy. Clin Cancer Res. 14:291–299. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ma HI, Lin SZ, Chiang YH, Li J, Chen SL, Tsao YP and Xiao X: Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther. 9:2–11. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li R, Chen H and Ren CS: Growth inhibition of breast cancer in rat by AAV mediated angiostatin gene. Chin J Cancer Res. 19:108–112. 2007. View Article : Google Scholar | |
Kubo S, Takagi-Kimura M and Kasahara N: Combinatorial anti-angiogenic gene therapy in a human malignant mesothelioma model. Oncol Rep. 34:633–638. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tan JF, Lu Q, Zhang XW and Tan M: Effect of co-transfection of angiostatin and Fas gene on growth of transplanted tumor in nude mice. China J Mod Med. 8:0132008.(In Chinese). | |
Kim HS, Jeong HY, Lee YK, Kim KS and Park YS: Synergistic antitumoral effect of IL-12 gene cotransfected with antiangiogenic genes for Angiostatin, Endostatin, and Saxatilin. Oncol Res Featuring Preclinical Clin Cancer Ther. 21:209–216. 2013. | |
Sun X, Vale M, Jiang X, Gupta R and Krissansen G: Antisense HIF-1alpha prevents acquired tumor resistance to angiostatin gene therapy. Cancer Gene Ther. 17:532–540. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen XJ, Zhu YY, Hu ZT, Zhang HH, Weng SM and Zhuang HZ: Effect of co-transfection of p53 and angiostatin gene on the apoptosis of gastric cancer SG7901 cells. Tumor. 7:577–580. 2010. | |
Schmitz V, Tirado-Ledo L, Raskopf E, Rabe C, Wernert N, Wang L, Prieto J, Qian C, Sauerbruch T and Caselmann WH: Effective antitumour mono- and combination therapy by gene delivery of angiostatin-like molecule and interleukin-12 in a murine hepatoma model. Int J Colorectal Dis. 20:494–501. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kuo CH, Chang BI, Lee FT, Chen PK, Lee JS, Shi GY and Wu HL: Development of recombinant adeno-associated virus serotype 2/8 carrying kringle domains of human plasminogen for sustained expression and cancer therapy. Hum Gene Ther. 26:603–613. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chu Y, Liu H, Lou G, Zhang Q and Wu C: Human placenta mesenchymal stem cells expressing exogenous kringle1-5 protein by fiber-modified adenovirus suppress angiogenesis. Cancer Gene Ther. 21:200–208. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schmitz V, Sauerbruch T and Raskopf E: Anti-tumoural effects of PlgK1-5 are directly linked to reduced ICAM expression, resulting in hepatoma cell apoptosis. Int J Colorectal Dis. 27:1029–1038. 2012. View Article : Google Scholar : PubMed/NCBI | |
O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR and Folkman J: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell. 88:277–285. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Fukai N, Mann K, Göhring W, Olsen BR and Timpl R: Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 17:4249–4256. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rong B, Yang S, Li W, Zhang W and Ming Z: Systematic review and meta-analysis of Endostar (rh-endostatin) combined with chemotherapy versus chemotherapy alone for treating advanced non-small cell lung cancer. World J Surg Oncol. 10:1702012. View Article : Google Scholar : PubMed/NCBI | |
Huiqi G, Jing Z, Peng F, Yong L and Baozhong S: In vivo study of the effect of combining endostatin gene therapy with 32P-colloid on hepatocarcinoma and its functioning mechanism. J BUON. 20:1042–1047. 2015.PubMed/NCBI | |
Yan F, Zheng Y and Huang L: Adenovirus-mediated combined anti-angiogenic and pro-apoptotic gene therapy enhances antitumor efficacy in hepatocellular carcinoma. Oncol Lett. 5:348–354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Xie Z, Zhou Y, Zhou X, Li P, Wang Z and Zhang Q: Experimental endostatin-GFP gene transfection into human retinal vascular endothelial cells using ultrasound-targeted cationic microbubble destruction. Mol Vis. 21:930–938. 2015.PubMed/NCBI | |
Li XP, Zhang HL, Wang HJ, Li YX, Li M, Lu L, Wan Y, Zhou BL, Liu Y, Pan Y, et al: Ad-endostatin treatment combined with low-dose irradiation in a murine lung cancer model. Oncol Rep. 32:650–658. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu RY, Zhou L, Zhang YL, Huang BJ, Ke ML, Chen JM, Li LX, Fu X, Wu JX and Huang W: An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun. 442:171–176. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang Y, Zhou L, Ke ML, Chen JM, Fu X, Ye CL, Wu JX, Liu RY and Huang W: Antitumor efficacy of a recombinant adenovirus encoding endostatin combined with an E1B55KD-deficient adenovirus in gastric cancer cells. J Transl Med. 11:2572013. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Gu H, Xu Y, Li F, Kuang S, Wang Z, Zhou X, Ma H, Li P, Zheng Y, et al: Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles. Theranostics. 5:399–417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maeshima Y, Colorado PC, Torre A, Holthaus KA, Grunkemeyer JA, Ericksen MB, Hopfer H, Xiao Y, Stillman IE and Kalluri R: Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem. 275:21340–21348. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang YP, Xu CX, Hou GS, Xin JX, Wang W and Liu XX: Effects of eukaryotic expression plasmid encoding human tumstatin gene on endothelial cells in vitro. Chin Med J (Engl). 123:2269–2273. 2010.PubMed/NCBI | |
Borza CM, Pozzi A, Borza DB, Pedchenko V, Hellmark T, Hudson BG and Zent R: Integrin alpha3beta1, a novel receptor for alpha3(IV) noncollagenous domain and a trans-dominant Inhibitor for integrin alphavbeta3. J Biol Chem. 281:20932–20939. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hwang-Bo J, Park JH and Chung IS: Tumstatin induces apoptosis mediated by Fas signaling pathway in oral squamous cell carcinoma SCC-VII cells. Oncol Lett. 10:1016–1022. 2015. View Article : Google Scholar : PubMed/NCBI | |
Goto T, Ishikawa H, Matsumoto K, Nishimura D, Kusaba M, Taura N, Shibata H, Miyaaki H, Ichikawa T, Hamasaki K, et al: Tum-1, a tumstatin fragment, gene delivery into hepatocellular carcinoma suppresses tumor growth through inhibiting angiogenesis. Int J Oncol. 33:33–40. 2008.PubMed/NCBI | |
You Y, Xue X, Li M, Qin X, Zhang C, Wang W, Giang C, Wu S, Liu Y, Zhu W, et al: Inhibition effect of pcDNA-tum-5 on the growth of S180 tumor. Cytotechnology. 56:97–104. 2008. View Article : Google Scholar : PubMed/NCBI | |
Caudroy S, Cucherousset J, Lorenzato M, Zahm JM, Martinella-Catusse C, Polette M and Birembaut P: Implication of tumstatin in tumor progression of human bronchopulmonary carcinomas. Hum Pathol. 35:1218–1222. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang YP, Xu CX, Hou GS, Xin JX, Wang W and Liu XX: Effects of eukaryotic expression plasmid encoding human tumstatin gene on endothelial cells in vitro. Chin Med J (Engl). 123:2269–2273. 2010.PubMed/NCBI | |
Zhang X, Xu W, Qian H, Zhu W and Zhang R: Mesenchymal stem cells modified to express lentivirus TNF-α Tumstatin(45–132) inhibit the growth of prostate cancer. J Cell Mol Med. 15:433–444. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thevenard J, Ramont L, Mir LM, Dupont-Deshorgue A, Maquart FX, Monboisse JC and Brassart-Pasco S: A new anti-tumor strategy based on in vivo tumstatin overexpression after plasmid electrotransfer in muscle. Biochem Biophys Res Commun. 432:549–552. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gu Q, Sun C, Luo J, Zhang T and Wang L: Inhibition of angiogenesis by a synthetic fusion protein VTF derived from vasostatin and tumstatin. Anticancer Drugs. 25:1044–1051. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Qi DD, Zhang TT, Chen QX, Wang GZ, Sui GY, Hao XW, Sun S, Song X and Chen YL: Antitumor activity of adenoviral vector containing T42 and 4xT42 peptide gene through inducing apoptosis of tumor cells and suppressing angiogenesis. Mol Med Rep. 11:2083–2091. 2015. View Article : Google Scholar : PubMed/NCBI | |
Trochon-Joseph V, Martel-Renoir D, Mir LM, Thomaïdis A, Opolon P, Connault E, Li H, Grenet C, Fauvel-Lafève F, Soria J, et al: Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res. 64:2062–2069. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, Docherty AJ and Murphy G: Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci. 112:579–587. 1999.PubMed/NCBI | |
Danhier F, Le Breton A and Préat V: RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 9:2961–2973. 2012. View Article : Google Scholar : PubMed/NCBI | |
Daugimont L, Vandermeulen G, Defresne F, Bouzin C, Mir LM, Bouquet C, Feron O and Préat V: Antitumoral and antimetastatic effect of antiangiogenic plasmids in B16 melanoma: Higher efficiency of the recombinant disintegrin domain of ADAM 15. Eur J Pharm Biopharm. 78:314–319. 2011. View Article : Google Scholar : PubMed/NCBI | |
Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Cemazar M, Dam E, Vasseur B, Attali P, et al: Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: Safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev. 24:99–107. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bosnjak M, Prosen L, Dolinsek T, Blagus T, Markelc B, Cemazar M, Bouquet C and Sersa G: Biological properties of melanoma and endothelial cells after plasmid AMEP gene electrotransfer depend on integrin quantity on cells. J Membr Biol. 246:803–819. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bosnjak M, Dolinsek T, Cemazar M, Kranjc S, Blagus T, Markelc B, Stimac M, Zavrsnik J, Kamensek U, Heller L, et al: Gene electrotransfer of plasmid AMEP, an integrin-targeted therapy, has antitumor and antiangiogenic action in murine B16 melanoma. Gene Ther. 22:578–590. 2015. View Article : Google Scholar : PubMed/NCBI | |
Date K, Matsumoto K, Shimura H, Tanaka M and Nakamura T: HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett. 420:1–6. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kubota T, Matsumura A, Taiyoh H, Izumiya Y, Fujiwara H, Okamoto K, Ichikawa D, Shiozaki A, Komatsu S, Nakanishi M, et al: Interruption of the HGF paracrine loop by NK4, an HGF antagonist, reduces VEGF expression of CT26 cells. Oncol Rep. 30:567–572. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kishi Y, Kuba K and Nakamura T, Wen J, Suzuki Y, Mizuno S, Nukiwa T, Matsumoto K and Nakamura T: Systemic NK4 gene therapy inhibits tumor growth and metastasis of melanoma and lung carcinoma in syngeneic mouse tumor models. Cancer Sci. 100:1351–1358. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ogura Y, Mizumoto K, Nagai E, Murakami M, Inadome N, Saimura M, Matsumoto K, Nakamura T, Maemondo M, Nukiwa T and Tanaka M: Peritumoral injection of adenovirus vector expressing NK4 combined with gemcitabine treatment suppresses growth and metastasis of human pancreatic cancer cells implanted orthotopically in nude mice and prolongs survival. Cancer Gene Ther. 13:520–529. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Sakai K, Nakamura T and Matsumoto K: Anti-cancer approach with NK4: Bivalent action and mechanisms. Anticancer Agents Med Chem. 10:36–46. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto K and Nakamura T: Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem Biophys Res Commun. 333:316–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Suzuki Y, Sakai K, Ueki J, Xu Q, Nakamura T, Shimada H, Nakamura T and Matsumoto K: Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma. Int J Cancer. 127:1948–1957. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto G, Omi Y, Lee U, Kubota E and Tabata Y: NK4 gene therapy combined with cisplatin inhibits tumour growth and metastasis of squamous cell carcinoma. Anticancer Res. 31:105–111. 2011.PubMed/NCBI | |
Taiyoh H, Kubota T, Fujiwara H, Matsumura A, Murayama Y, Okamoto K, Ichikawa D, Ochiai T, Nakamura T, Matsumoto K, et al: NK4 gene expression enhances 5-fluorouracil-induced apoptosis of murine colon cancer cells. Anticancer Res. 31:2217–2224. 2011.PubMed/NCBI | |
Zhu Y, Cheng M, Yang Z, Zeng CY, Chen J, Xie Y, Luo SW, Zhang KH, Zhou SF and Lu NH: Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts. Drug Des Devel Ther. 8:2449–2462. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tada Y, Hiroshima K, Shimada H, Morishita N, Shirakawa T, Matsumoto K, Shingyoji M, Sekine I, Tatsumi K and Tagawa M: A clinical protocol to inhibit the HGF/c-Met pathway for malignant mesothelioma with an intrapleural injection of adenoviruses expressing the NK4 gene. Springerplus. 4:3582015. View Article : Google Scholar : PubMed/NCBI | |
Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM and ten Dijke P: Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J. 23:4018–4028. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ten Dijke P, Goumans MJ and Pardali E: Endoglin in angiogenesis and vascular diseases. Angiogenesis. 11:79–89. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, Syro LV, Kovacs K and Lloyd RV: Endoglin (CD105): A review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res. 31:2283–2290. 2011.PubMed/NCBI | |
Tsujie M, Tsujie T, Toi H, Uneda S, Shiozaki K, Tsai H and Seon BK: Anti-tumor activity of an anti-endoglin monoclonal antibody is enhanced in immunocompetent mice. Int J Cancer. 122:2266–2273. 2008. View Article : Google Scholar : PubMed/NCBI | |
Uneda S, Toi H, Tsujie T, Tsujie M, Harada N, Tsai H and Seon BK: Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer. 125:1446–1453. 2009. View Article : Google Scholar : PubMed/NCBI | |
Muñoz R, Arias Y, Ferreras JM, Jiménez P, Langa C, Rojo MA, Gayoso MJ, Córdoba-Díaz D, Bernabéu C and Girbés T: In vitro and in vivo effects of an anti-mouse endoglin (CD105)-immunotoxin on the early stages of mouse B16MEL4A5 melanoma tumours. Cancer Immunol Immunother. 62:541–551. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tabata M, Kondo M, Haruta Y and Seon BK: Antiangiogenic radioimmunotherapy of human solid tumors in SCID mice using (125)I-labeled anti-endoglin monoclonal antibodies. Int J Cancer. 82:737–742. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dolinsek T, Markelc B, Sersa G, Coer A, Stimac M, Lavrencak J, Brozic A, Kranjc S and Cemazar M: Multiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growth. PLoS One. 8:e587232013. View Article : Google Scholar : PubMed/NCBI | |
Dolinsek T, Markelc B, Bosnjak M, Blagus T, Prosen L, Kranjc S, Stimac M, Lampreht U, Sersa G and Cemazar M: Endoglin silencing has significant antitumor effect on murine mammary adenocarcinoma mediated by vascular targeted effect. Curr Gene Ther. 15:228–244. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Hou J, Liu Z, Yu H, Sun W, Xiong J, Liao Z, Zhou F, Xie C and Zhou Y: Gene therapy with tumor-specific promoter mediated suicide gene plus IL-12 gene enhanced tumor inhibition and prolonged host survival in a murine model of Lewis lung carcinoma. J Transl Med. 9:392011. View Article : Google Scholar : PubMed/NCBI | |
Stimac M, Dolinsek T, Lampreht U, Cemazar M and Sersa G: Gene electrotransfer of plasmid with tissue specific promoter encoding shRNA against endoglin exerts antitumor efficacy against murine TS/A tumors by vascular targeted effects. PLoS One. 10:e01249132015. View Article : Google Scholar : PubMed/NCBI | |
Dolinsek T, Sersa G and Cemazar M: Melanoma cell viability is reduced after endoglin silencing with gene electrotransfer. Biol Med Food Environ Technol. 325–328. 2016. | |
Pujade-Lauraine E, Hilpert F, Weber B, et al: Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol. 32:1302–1308. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerchenmüller C, Kahl C, Seipelt G, et al: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 15:1065–1075. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG, Hariharan S and Escudier B: Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 32:752–759. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bear HD, Tang G, Rastogi P, Geyer CE Jr, Liu Q, Robidoux A, Baez-Diaz L, Brufsky AM, Mehta RS, Fehrenbacher L, et al: Neoadjuvant plus adjuvant bevacizumab in early breast cancer (NSABP B-40 [NRG Oncology]): Secondary outcomes of a phase 3, randomised controlled trial. Lancet Oncol. 16:1037–1048. 2015. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, Ruff P, van Hazel GA, Moiseyenko V, Ferry D, et al: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 30:3499–3450. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tannock IF, Fizazi K, Ivanov S, Karlsson CT, Fléchon A, Skoneczna I, Orlandi F, Gravis G, Matveev V, Bavbek S, et al: Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): A phase 3, double-blind randomised trial. Lancet Oncol. 14:760–768. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ramlau R, Gorbunova V, Ciuleanu TE, Novello S, Ozguroglu M, Goksel T, Baldotto C, Bennouna J, Shepherd FA, Le-Guennec S, et al: Aflibercept and docetaxel versus docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: A randomized, controlled phase III trial. J Clin Oncol. 30:3640–3647. 2012. View Article : Google Scholar : PubMed/NCBI | |
Allen JW, Moon J, Redman M, Gadgeel SM, Kelly K, Mack PC, Saba HM, Mohamed MK, Jahanzeb M and Gandara DR: Southwest oncology group S0802: A randomized, phase II trial of weekly topotecan with and without ziv-aflibercept in patients with platinum-treated small-cell lung cancer. J Clin Oncol. 32:2463–2470. 2014. View Article : Google Scholar : PubMed/NCBI | |
Siu LL, Shapiro JD, Jonker DJ, Karapetis CS, Zalcberg JR, Simes J, Couture F, Moore MJ, Price TJ, Siddiqui J, et al: Phase III randomized, placebo-controlled study of cetuximab plus brivanib alaninate versus cetuximab plus placebo in patients with metastatic, chemotherapy-refractory, wild-type K-RAS colorectal carcinoma: The NCIC clinical trials group and AGITG CO. 20 trial. J Clin Oncol. 31:2477–2484. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lordick F, Kang YK, Chung HC, Salman P, Oh SC, Bodoky G, Kurteva G, Volovat C, Moiseyenko VM, Gorbunova V, et al: Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): A randomised, open-label phase 3 trial. Lancet Oncol. 14:490–499. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hitre E, Budai B, Takácsi-Nagy Z, Rubovszky G, Tóth E, Remenár É, Polgár C and Láng I: Cetuximab and platinum-based chemoradio- or chemotherapy of patients with epidermal growth factor receptor expressing adenoid cystic carcinoma: A phase II trial. Br J Cancer. 109:1117–1122. 2013. View Article : Google Scholar : PubMed/NCBI | |
Massarelli E, Haddad RI, Lee JJ, Garden AS, Blumenschein GR, William WN, Tisshler RB, Glisson BS, Gold KA, Johnson FM, et al: Randomized phase II trial of weekly paclitaxel, carboplatin, cetuximab (PCC) versus cetuximab, docetaxel, cisplatin, and fluorouracil (C-TPF) in previously untreated patients with locally advanced head and neck squamous cell carcinoma. J Clin Oncol. 32:TPS61022014. | |
Wang J, Sun Y and Qin S: Endostar Phase IV Study Group: Results of phase IV clinical trial of combining endostar with chemotherapy for treatment of advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 28:75982010. View Article : Google Scholar | |
Cui C, Mao L, Chi Z, Si L, Sheng X, Kong Y, Li S, Lian B, Gu K, Tao M, et al: A phase II, randomized, double-blind, placebo-controlled multicenter trial of Endostar in patients with metastatic melanoma. Mol Ther. 21:1456–1463. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin T, Li B and Chen XZ: AA phase II trial of Endostar combined with gemcitabine and cisplatin chemotherapy in patients with metastatic nasopharyngeal carcinoma (NCT01612286). Oncol Res. 21:317–323. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Guo W, Cao J, Lv F, Zhang W, Qiu L, Li W, Ji D, Zhang S, Xia Z, et al: Endostar in combination with modified FOLFOX6 as an initial therapy in advanced colorectal cancer patients: A phase I clinical trial. Cancer Chemother Pharmacol. 75:547–557. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu AX, Rosmorduc O, Evans TJ, Ross PJ, Santoro A, Carrilho FJ, Bruix J, Qin S, Thuluvath PJ, Llovet JM, et al: SEARCH: A phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 33:559–566. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, Shong YK, et al: Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial trial. Lancet. 384:319–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, Cai J, Poon RT, Han KH, Tak WY, et al: STORM: A phase III randomized, double-blind, placebo-controlled trial of adjuvant sorafenib after resection or ablation to prevent recurrence of hepatocellular carcinoma (HCC). J Clin Oncol. 32:40062014. | |
Schwandt A, von Gruenigen VE, Wenham RM, Frasure H, Eaton S, Fusco N, Fu P, Wright JJ, Dowlati A and Waggoner S: Randomized phase II trial of sorafenib alone or in combination with carboplatin/paclitaxel in women with recurrent platinum sensitive epithelial ovarian, peritoneal, or fallopian tube cancer. Invest New Drugs. 32:729–738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Hutson TE, Tomczak P, Tomczak P, Michaelson M, Bukowski RM, Rixe O, Oudard S, Kim ST, Baum CM and Figlin RA: Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-{alpha}) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol. 24:LBA32006. | |
Socinski MA, Novello S, Brahmer JR, Rosell R, Sanchez JM, Belani CP, Govindan R, Atkins JN, Gillenwater HH, Pallares C, et al: Multicenter, phase II trial of sunitinib in previously treated, advanced non-small-cell lung cance. J Clin Oncol. 26:650–656. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheng A, Kang Y, Lin D, Park J, Kudo M, Qin S, Omata M, Lowenthal SWP, Lanzalone S, Yang L, et al: Phase III trial of sunitinib (Su) versus sorafenib (So) in advanced hepatocellular carcinoma (HCC). J Clin Oncol. 29:40002011. View Article : Google Scholar | |
Michaelson MD, Oudard S, Ou YC, Sengeløv L, Saad F, Houede N, Ostler P, Stenzl A, Daugaard G, Jones R, et al: Randomized, placebo-controlled, phase III trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer. J Clin Oncol. 32:76–82. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Undurraga MS, Wang J, Ipiña JJ, Kim DW, Ogura M, et al: Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood. 119:1123–1129. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kluger HM, Dudek AZ, McCann C, Ritacco J, Southard N, Jilaveanu LB, Molinaro A and Sznol M: A phase 2 trial of dasatinib in advanced melanoma. Cancer. 117:2202–2208. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong SJ, Karrison T, Hayes DN, Kies MS, Cullen KJ, Tanvetyanon T, Argiris A, Takebe N, Lim D, Saba NF, et al: Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann Oncol. 27:318–123. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves JA, et al: Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 2. J Clin Oncol. 22:785–794. 2004. View Article : Google Scholar : PubMed/NCBI | |
Argiris A, Ghebremichael M, Gilbert J, Lee JW, Sachidanandam K, Kolesar JM, Burtness B and Forastiere AA: Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: An eastern cooperative oncology group trial. J Clin Oncol. 31:1405–1414. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dutton SJ, Ferry DR, Blazeby JM, Abbas H, Dahle-Smith A, Mansoor W, Thompson J, Harrison M, Chatterjee A, Falk S, et al: Gefitinib for oesophageal cancer progressing after chemotherapy (COG): A phase 3, multicentre, double-blind, placebo-controlled randomised tria. Lancet Oncol. 15:894–904. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the national cancer institute of canada clinical trials group. J Clin Oncol. 25:1960–1966. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, et al: Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13:239–246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, et al: Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 28:1061–1068. 2010. View Article : Google Scholar : PubMed/NCBI | |
van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schöffski P, Aglietta M, Staddon AP, Beppu Y, et al: Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 379:1879–1886. 2012. View Article : Google Scholar : PubMed/NCBI |