1
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Greenman C, Stephens P, Smith R, Dalgliesh
GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C,
et al: Patterns of somatic mutation in human cancer genomes.
Nature. 446:153–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Garnett MJ and Marais R: Guilty as
charged; B-RAF is a human oncogene. Cancer Cell. 6:313–319. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wan PT, Garnett MJ, Roe SM, Lee S,
Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ,
Barford D, et al: Mechanism of activation of the RAF-ERK signaling
pathway by oncogenic mutations of B-RAF. Cell. 116:855–867. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hartsough EJ, Basile KJ and Aplin AE:
Beneficial effects of RAF inhibitor in mutant BRAF splice
variant-expressing melanoma. Mol Cancer Res. 12:795–802. 2014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Dzienis MR and Atkinson VG: Response rate
to vemurafenib in patients with BRAF-positive melanoma brain
metastases: A retrospective review. Melanoma Res. 24:349–353. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Le K, Blomain ES, Rodeck U and Aplin AE:
Selective RAF inhibitor impairs ERK1/2 phosphorylation and growth
in mutant NRAS, vemurafenib-resistant melanoma cells. Pigment Cell
Melanoma Res. 26:509–517. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Huang T, Zhuge J and Zhang WW: Sensitive
detection of BRAF V600E mutation by Amplification Refractory
Mutation System (ARMS)-PCR. Biomark Res. 1:32013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen D, Huang JF, Xia H, Duan GJ, Chuai
ZR, Yang Z, Fu WL and Huang Q: High-sensitivity PCR method for
detecting BRAF V600E mutations in metastatic colorectal cancer
using LNA/DNA chimeras to block wild-type alleles. Anal Bioanal
Chem. 406:2477–2487. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang X, Zhao Y, Wang M, Yap WS and Chang
AY: Detection and comparison of epidermal growth factor receptor
mutations in cells and fluid of malignant pleural effusion in
non-small cell lung cancer. Lung Cancer. 60:175–182. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Asano H, Toyooka S, Tokumo M, Ichimura K,
Aoe K, Ito S, Tsukuda K, Ouchida M, Aoe M, Katayama H, et al:
Detection of EGFR gene mutation in lung cancer by mutant-enriched
polymerase chain reaction assay. Clin Cancer Res. 12:43–48. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ikryannikova LN, Afanas'ev MV, Akopian TA,
Il'ina EN, Kuz'min AV, Larionova EE, Smirnova TG, Chernousova LN
and Govorun VM: Mass-spectrometry based minisequencing method for
the rapid detection of drug resistance in Mycobacterium
tuberculosis. J Microbiol Methods. 70:395–405. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Turner DJ, Zirvi MA, Barany F, Elenitsas R
and Seykora J: Detection of the BRAF V600E mutation in melanocytic
lesions using the ligase detection reaction. J Cutan Pathol.
32:334–339. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ye Y, Wang D, Su C, Rong T and Guo A:
Combined detection of p53, p16, Rb, and EGFR mutations in lung
cancer by suspension microarray. Genet Mol Res. 8:1509–1518. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Whitcombe D, Theaker J, Guy SP, Brown T
and Little S: Detection of PCR products using self-probing
amplicons and fluorescence. Nat Biotechnol. 17:804–807. 1999.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mattarucchi E, Marsoni M, Binelli G, Passi
A, Lo Curto F, Pasquali F and Porta G: Different real time PCR
approaches for the fine quantification of SNP's alleles in DNA
pools: Assays development, characterization and pre-validation. J
Biochem Mol Biol. 38:555–562. 2005.PubMed/NCBI
|
17
|
Wolstencroft EC, Hanlon K, Harries LW,
Standen GR, Sternberg A and Ellard S: Development of a quantitative
real-time polymerase chain reaction assay for the detection of the
JAK2 V617F mutation. J Mol Diagn. 9:42–46. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Thelwell N, Millington S, Solinas A, Booth
J and Brown T: Mode of action and application of Scorpion primers
to mutation detection. Nucleic Acids Res. 28:3752–3761. 2000.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Newton CR, Graham A, Heptinstall LE,
Powell SJ, Summers C, Kalsheker N, Smith JC and Markham AF:
Analysis of any point mutation in DNA. The amplification refractory
mutation system (ARMS). Nucleic Acids Res. 17:2503–2516. 1989.
|
20
|
Jarry A, Masson D, Cassagnau E, Parois S,
Laboisse C and Denis MG: Real-time allele-specific amplification
for sensitive detection of the BRAF mutation V600E. Mol Cell
Probes. 18:349–352. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
van Es JM, Polak MM, van den Berg FM,
Ramsoekh TB, Craanen ME, Hruban RH and Offerhaus GJ: Molecular
markers for diagnostic cytology of neoplasms in the head region of
the pancreas: Mutation of K-ras and overexpression of the p53
protein product. J Clin Pathol. 48:218–222. 1995. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tan YH, Liu Y, Eu KW, Ang PW, Li WQ,
Salto-Tellez M, Iacopetta B and Soong R: Detection of BRAF V600E
mutation by pyrosequencing. Pathology. 40:295–298. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li J, Wang L, Jänne PA and Makrigiorgos
GM: Coamplification at lower denaturation temperature-PCR increases
mutation-detection selectivity of TaqMan-based real-time PCR. Clin
Chem. 55:748–756. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li J, Wang L, Mamon H, Kulke MH, Berbeco R
and Makrigiorgos GM: Replacing PCR with COLD-PCR enriches variant
DNA sequences and redefines the sensitivity of genetic testing. Nat
Med. 14:579–584. 2008. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Milbury CA, Correll M, Quackenbush J,
Rubio R and Makrigiorgos GM: COLD-PCR enrichment of rare cancer
mutations prior to targeted amplicon resequencing. Clin Chem.
58:580–589. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pritchard CC, Akagi L, Reddy PL, Joseph L
and Tait JF: COLD-PCR enhanced melting curve analysis improves
diagnostic accuracy for KRAS mutations in colorectal carcinoma. BMC
Clin Pathol. 10:62010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zuo Z, Chen SS, Chandra PK, Galbincea JM,
Soape M, Doan S, Barkoh BA, Koeppen H, Medeiros LJ and Luthra R:
Application of COLD-PCR for improved detection of KRAS mutations in
clinical samples. Mod Pathol. 22:1023–1031. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Montgomery J, Wittwer CT, Palais R and
Zhou L: Simultaneous mutation scanning and genotyping by
high-resolution DNA melting analysis. Nat Protoc. 2:59–66. 2007.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou L, Wang L, Palais R, Pryor R and
Wittwer CT: High-resolution DNA melting analysis for simultaneous
mutation scanning and genotyping in solution. Clin Chem.
51:1770–1777. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Amicarelli G, Shehi E, Makrigiorgos GM and
Adlerstein D: FLAG assay as a novel method for real-time signal
generation during PCR: Application to detection and genotyping of
KRAS codon 12 mutations. Nucleic Acids Res. 35:e1312007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Efrati E, Elkin H, Peerless Y, Sabo E,
Ben-Izhak O and Hershkovitz D: LNA-based PCR clamping enrichment
assay for the identification of KRAS mutations. Cancer Biomark.
8:89–94. 2010-2011. View Article : Google Scholar
|
32
|
Kobunai T, Watanabe T, Yamamoto Y and
Eshima K: The frequency of KRAS mutation detection in human colon
carcinoma is influenced by the sensitivity of assay methodology: A
comparison between direct sequencing and real-time PCR. Biochem
Biophys Res Commun. 395:158–162. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li J, Wang F, Mamon H, Kulke MH, Harris L,
Maher E, Wang L and Makrigiorgos GM: Antiprimer quenching-based
real-time PCR and its application to the analysis of clinical
cancer samples. Clin Chem. 52:624–633. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Fariña Sarasqueta A, Moerland E, de Bruyne
H, de Graaf H, Vrancken T, van Lijnschoten G and van den Brule AJ:
SNaPshot and StripAssay as valuable alternatives to direct
sequencing for KRAS mutation detection in colon cancer routine
diagnostics. J Mol Diagn. 13:199–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Magnin S, Viel E, Baraquin A,
Valmary-Degano S, Kantelip B, Pretet JL, Mougin C, Bigand M,
Girardo B, Borg C and Ferrand C: A multiplex SNaPshot assay as a
rapid method for detecting KRAS and BRAF mutations in advanced
colorectal cancers. J Mol Diagn. 13:485–492. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zinsky R, Bölükbas S, Bartsch H, Schirren
J and Fisseler-Eckhoff A: Analysis of KRAS mutations of exon 2
Codons 12 and 13 by SNaPshot analysis in comparison to common DNA
sequencing. Gastroenterol Res Pract. 2010:7893632010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Grau O and Griffais R: Diagnosis of
mutations by the PCR double RFLP method (PCR-dRFLP). Nucleic Acids
Res. 22:5773–5774. 1994. View Article : Google Scholar : PubMed/NCBI
|
38
|
Newton CR, Graham A, Heptinstall LE,
Powell SJ, Summers C, Kalshekerl N, Smith JC and Markham AF:
Analysis of any point mutation in DNA. The amplification refractory
mutation system (ARMS). Nucleic Acids Res. 17:2503–2516. 1989.
|
39
|
Toyooka S, Tsukuda K, Ouchida M, Tanino M,
Inaki Y, Kobayashi K, Yano M, Soh J, Kobatake T, Shimizu N and
Shimizu K: Detection of codon 61 point mutations of the K-ras gene
in lung and colorectal cancers by enriched PCR. Oncol Rep.
10:1455–1459. 2003.PubMed/NCBI
|
40
|
Behn M, Qun S, Pankow W, Havemann K and
Schuermann M: Frequent detection of ras and p53 mutations in brush
cytology samples from lung cancer patients by a restriction
fragment length polymorphism-based ‘enriched PCR’ technique. Clin
Cancer Res. 4:361–371. 1998.PubMed/NCBI
|
41
|
Behn M and Schuermann M: Sensitive
detection of p53 gene mutations by a ‘mutant enriched’ PCR-SSCP
technique. Nucleic Acids Res. 26:1356–1358. 1998. View Article : Google Scholar : PubMed/NCBI
|
42
|
Scobie GA, Ho ST, Dolan G and Kalsheker
NA: Development of a rapid DNA screening procedure for the Factor V
Leiden mutation. Clin Mol Pathol. 49:M361–M363. 1996. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bai RK and Wong LJ: Detection and
quantification of heteroplasmic mutant mitochondrial DNA by
real-time amplification refractory mutation system quantitative PCR
analysis: A single-step approach. Clin Chem. 50:996–1001. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Board RE, Thelwell NJ, Ravetto PF, Little
S, Ranson M, Dive C, Hughes A and Whitcombe D: Multiplexed assays
for detection of mutations in PIK3CA. Clin Chem. 54:757–760. 2008.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Marghoob AA, Koenig K, Bittencourt FV,
Kopf AW and Bart RS: Breslow thickness and clark level in melanoma:
Uupport for including level in pathology reports and in American
Joint Committee on Cancer Staging. Cancer. 88:589–595. 2000.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kimura H, Kasahara K, Kawaishi M, Kunitoh
H, Tamura T, Holloway B and Nishio K: Detection of epidermal growth
factor receptor mutations in serum as a predictor of the response
to gefitinib in patients with non-small-cell lung cancer. Clin
Cancer Res. 12:3915–3921. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kalikaki A, Koutsopoulos A, Hatzidaki D,
Trypaki M, Kontopodis E, Stathopoulos E, Mavroudis D, Georgoulias V
and Voutsina A: Clinical outcome of patients with non-small cell
lung cancer receiving front-line chemotherapy according to EGFR and
K-RAS mutation status. Lung Cancer. 69:110–115. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Uruga H, Kishi K, Fujii T, Beika Y,
Enomoto T, Takaya H, Miyamoto A, Morokawa N, Kurosaki A and
Yoshimura K: Efficacy of gefitinib for elderly patients with
advanced non-small cell lung cancer harboring epidermal growth
factor receptor gene mutations: A retrospective analysis. Intern
Med. 49:103–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Tamura K, Okamoto I, Kashii T, Negoro S,
Hirashima T, Kudoh S, Ichinose Y, Ebi N, Shibata K, Nishimura T, et
al: Multicentre prospective phase II trial of gefitinib for
advanced non-small cell lung cancer with epidermal growth factor
receptor mutations: Results of the West Japan Thoracic Oncology
Group trial (WJTOG0403). Br J Cancer. 98:907–914. 2008. View Article : Google Scholar : PubMed/NCBI
|
51
|
Endo K, Konishi A, Sasaki H, Takada M,
Tanaka H, Okumura M, Kawahara M, Sugiura H, Kuwabara Y, Fukai I, et
al: Epidermal growth factor receptor gene mutation in non-small
cell lung cancer using highly sensitive and fast TaqMan PCR assay.
Lung Cancer. 50:375–384. 2005. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhao J, Xie F, Zhong W, Wu W, Qu S, Gao S,
Liu L, Zhao J, Wang M, Zhou J, et al: Restriction
endonuclease-mediated real-time digestion-PCR for somatic mutation
detection. Int J Cancer. 132:2858–2866. 2013. View Article : Google Scholar : PubMed/NCBI
|