A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma
- Authors:
- Daniel Ortega‑Bernal
- Claudia H. González‑De La Rosa
- Elena Arechaga‑Ocampo
- Miguel Angel Alvarez‑Avitia
- Nora Sobrevilla Moreno
- Claudia Rangel‑Escareño
-
Affiliations: Natural Sciences Department, Universidad Autónoma Metropolitana, Mexico City 05300, Mexico, Medical Oncology Department, Instituto Nacional de Cancerología, Mexico City 14080, Mexico, Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico - Published online on: May 31, 2018 https://doi.org/10.3892/ol.2018.8861
- Pages: 1899-1911
This article is mentioned in:
Abstract
Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, et al: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Jemal A, Grey N, Ferlay J and Forman D: Global cancer transitions according to the human development index (2008-2030): A population-based study. Lancet Oncol. 13:790–801. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shain AH and Bastian BC: From melanocytes to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shitara D, Nascimento MM, Puig S, Yamada S, Enokihara MM, Michalany N and Bagatin E: Nevus-associated melanomas: Clinicopathologic features. Am J Clin Pathol. 142:485–491. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA and Chin L: Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol. 21:2144–2153. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM, Ajouaou A, Kortman PC, Dankort D, McMahon M, et al: Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 26:1055–1069. 2012. View Article : Google Scholar : PubMed/NCBI | |
Costin GE and Hearing VJ: Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 21:976–994. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, et al: High frequency of BRAF mutations in nevi. Nat Genet. 33:19–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Poynter JN, Elder JT, Fullen DR, Nair RP, Soengas MS, Johnson TM, Redman B, Thomas NE and Gruber SB: BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res. 16:267–273. 2006. View Article : Google Scholar : PubMed/NCBI | |
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI | |
Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N, Ohtani N, Hara E, Nakamura M, Morita A, et al: Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell. 55:73–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin WM, Luo S, Muzikansky A, Lobo AZ, Tanabe KK, Sober AJ, Cosimi AB, Tsao H and Duncan LM: Outcome of patients with de novo versus nevus-associated melanoma. J Am Acad Dermatol. 72:54–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
Smith AP, Hoek K and Becker D: Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther. 4:1018–1029. 2005. View Article : Google Scholar : PubMed/NCBI | |
Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D and Wang Y: Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 11:7234–7242. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shepelin D, Korzinkin M, Vanyushina A, Aliper A, Borisov N, Vasilov R, Zhukov N, Sokov D, Prassolov V, Gaifullin N, et al: Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget. 7:656–670. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tremante E, Ginebri A, Lo Monaco E, Benassi B, Frascione P, Grammatico P, Cappellacci S, Catricalà C, Arcelli D, Natali PG, et al: A melanoma immune response signature including Human Leukocyte Antigen-E. Pigment Cell Melanoma Res. 27:103–112. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mitsui H, Kiecker F, Shemer A, Cannizzaro MV, Wang CQ, Gulati N, Ohmatsu H, Shah KR, Gilleaudeau P, Sullivan-Whalen M, et al: Discrimination of dysplastic nevi from common melanocytic nevi by cellular and molecular criteria. J Invest Dermatol. 136:2030–2040. 2016. View Article : Google Scholar : PubMed/NCBI | |
Raskin L, Fullen DR, Giordano TJ, Thomas DG, Frohm ML, Cha KB, Ahn J, Mukherjee B, Johnson TM and Gruber SB: Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J Invest Dermatol. 133:2585–2592. 2013. View Article : Google Scholar : PubMed/NCBI | |
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2015. | |
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI | |
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bolstad BM, Irizarry RA, Astrand M and Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI | |
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3:Article3. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoaglin DC, Mosteller F and Tukey JW: Understanding robust and exploratory data analysis. John Wiley & Sons. 404–414. 1983. | |
Wickham H: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag; New York, NY: 2009, View Article : Google Scholar | |
Xu J, Liu L, Zheng X, You C and Li Q: Expression and inhibition of ADAMDEC1 in craniopharyngioma cells. Neurol Res. 34:701–706. 2012. View Article : Google Scholar : PubMed/NCBI | |
Willers J, Häffner A, Zepter K, Storz M, Urosevic M, Burg G and Dummer R: The interferon inhibiting cytokine IK is overexpressed in cutaneous T cell lymphoma derived tumor cells that fail to upregulate major histocompatibility complex class II upon interferon-gamma stimulation. J Invest Dermatol. 116:874–879. 2001. View Article : Google Scholar : PubMed/NCBI | |
Han KH, Lee SH, Ha SA, Kim HK, Lee C, Kim DH, Gong KH, Yoo J, Kim S and Kim JW: The functional and structural characterization of a novel oncogene GIG47 involved in the breast tumorigenesis. BMC Cancer. 12:2742012. View Article : Google Scholar : PubMed/NCBI | |
Stefanska B, Cheishvili D, Suderman M, Arakelian A, Huang J, Hallett M, Han ZG, Al-Mahtab M, Akbar SM, Khan WA, et al: Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res. 20:3118–3132. 2014. View Article : Google Scholar : PubMed/NCBI | |
Müller M, Beck IM, Gadesmann J, Karschuk N, Paschen A, Proksch E, Djonov V, Reiss K and Sedlacek R: MMP19 is upregulated during melanoma progression and increases invasion of melanoma cells. Mod Pathol. 23:511–521. 2010. View Article : Google Scholar : PubMed/NCBI | |
Planelles L, Medema JP, Hahne M and Hardenberg G: The expanding role of APRIL in cancer and immunity. Curr Mol Med. 8:829–844. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Lu H, Jiang Z, Pastuszyn A and Hu CA: Apolipoprotein 16, a novel proapoptotic Bcl-2 homology 3-only protein, induces mitochondria-mediated apoptosis in cancer cells. Mol Cancer Res. 3:21–31. 2005.PubMed/NCBI | |
Tang Y, Yan G, Song X, Wu K, Li Z, Yang C, Deng T, Sun Y, Hu X, Yang C, et al: STIP overexpression confers oncogenic potential to human non-small cell lung cancer cells by regulating cell cycle and apoptosis. J Cell Mol Med. 19:2806–2817. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park UH, Kang MR, Kim EJ, Kwon YS, Hur W, Yoon SK, Song BJ, Park JH, Hwang JT, Jeong JC, et al: ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation. Oncogene. 14:3742–3752. 2016. View Article : Google Scholar | |
Kraya AA, Piao S, Xu X, Zhang G, Herlyn M, Gimotty P, Levine B, Amaravadi RK and Speicher DW: Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy. 11:60–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Singh AP, Sharma B, Owen LB and Singh RK: CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol. 6:111–116. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cano-Rodríguez D, Campagnoli S, Grandi A, Parri M, Camilli E, Song C, Jin B, Lacombe A, Pierleoni A, Bombaci M, et al: TCTN2: A novel tumor marker with oncogenic properties. Oncotarget. 8:95256–95269. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tomita T, Ieguchi K, Coin F, Kato Y, Kikuchi H, Oshima Y, Kurata S and Maru Y: ZFC3H1, a zinc finger protein, modulates IL-8 transcription by binding with celastramycin A, a potential immune suppressor. PLoS One. 30:e1089572014. View Article : Google Scholar | |
Singh R, Kapur N, Mir H, Singh N, Lillard JW Jr and Singh S: CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget. 9:7343–7353. 2016. | |
Noguchi K, Dalton AC, Howley BV, McCall BJ, Yoshida A, Diehl JA and Howe PH: Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines. PLoS One. 17:e01778302017. View Article : Google Scholar | |
Kawahara R, Bollinger JG, Rivera C, Ribeiro AC, Brandão TB, Paes Leme AF and MacCoss MJ: A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics. 16:159–173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Metz C, Döger R, Riquelme E, Cortés P, Holmes C, Shaughnessy R, Oyanadel C, Grabowski C, González A and Soza A: Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells. Biol Res. 49:332016. View Article : Google Scholar : PubMed/NCBI | |
Mashidori T, Shirataki H, Kamai T, Nakamura F and Yoshida K: Increased alpha-taxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer. Biomed Res. 32:103–110. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Gong H, Zhang G, Vuletic S, Albers J, Zhang J, Liang H, Sui Y and Zheng J: Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration. Acta Biochim Biophys Sin (Shanghai). 49:62–73. 2017. View Article : Google Scholar : PubMed/NCBI | |
Petroziello J, Yamane A, Westendorf L, Thompson M, McDonagh C, Cerveny C, Law CL, Wahl A and Carter P: Suppression subtractive hybridization and expression profiling identifies a unique set of genes overexpressed in non-small-cell lung cancer. Oncogene. 23:7734–7745. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li S, Sheng B, Zhao M, Shen Q, Zhu H and Zhu X: The prognostic values of signal transducers activators of transcription family in ovarian cancer. Biosci Rep. 37:BSR20170650. 2017. View Article : Google Scholar | |
Kim KW, Paul P, Qiao J, Lee S and Chung DH: Enhanced autophagy blocks angiogenesis via degradation of gastrin-releasing peptide in neuroblastoma cells. Autophagy. 9:1579–1590. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary A, Hilton MB, Seaman S, Haines DC, Stevenson S, Lemotte PK, Tschantz WR, Zhang XM, Saha S, Fleming T and St Croix B: TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell. 14:212–226. 2012. View Article : Google Scholar | |
Phan NN, Wang CY, Chen CF, Sun Z, Lai MD and Lin YC: Voltage-gated calcium channels: Novel targets for cancer therapy. Oncol Lett. 14:2059–2074. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A, Sahai E and Marais R: Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell. 19:45–57. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Qi B, Oka K, Shimakage M, Yoshioka N, Inoue H, Hakura A, Kodama K, Stanbridge EJ and Yutsudo M: Link of a new type of apoptosis-inducing gene ASY/Nogo-B to human cancer. Oncogene. 5:3929–3936. 2001. View Article : Google Scholar | |
Safe S, Jin UH, Hedrick E, Reeder A and Lee SO: Minireview: Role of orphan nuclear receptors in cancer and potential as drug targets. Mol Endocrinol. 28:157–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ku AT, Shaver TM, Rao AS, Howard JM, Rodriguez CN, Miao Q, Garcia G, Le D, Yang D, Borowiak M, et al: TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. Elife. 6:e232422017. View Article : Google Scholar : PubMed/NCBI | |
Girgis AH, Iakovlev VV, Beheshti B, Bayani J, Squire JA, Bui A, Mankaruos M, Youssef Y, Khalil B, Khella H, et al: Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res. 15:5273–5284. 2012. View Article : Google Scholar | |
Rasmussen SL, Krarup HB, Sunesen KG, Johansen MB, Stender MT, Pedersen IS, Madsen PH and Thorlacius-Ussing O: Hypermethylated DNA, a circulating biomarker for colorectal cancer detection. PLoS One. 12:e01808092017. View Article : Google Scholar : PubMed/NCBI | |
Goeppert B, Ernst C, Baer C, Roessler S, Renner M, Mehrabi A, Hafezi M, Pathil A, Warth A, Stenzinger A, et al: Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. Epigenetics. 11:780–790. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Liu Y, Tong D, Qin Y, Yang J, Xue M, Du N, Liu L, Guo B, Hou N, et al: MeCP2 promotes gastric cancer progression through regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 signaling pathways. EBioMedicine. 16:87–100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du HQ, Wang Y, Jiang Y, Wang CH, Zhou T, Liu HY and Xiao H: Silencing of the TPM1 gene induces radioresistance of glioma U251 cells. Oncol Rep. 33:2807–2814. 2015. View Article : Google Scholar : PubMed/NCBI | |
Camacho Leal Mdel P, Sciortino M, Tornillo G, Colombo S, Defilippi P and Cabodi S: p130Cas/BCAR1 scaffold protein in tissue homeostasis and pathogenesis. Gene. 562:1–7. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Herman JG and Guo M: The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget. 7:37331–37346. 2016.PubMed/NCBI | |
Zhang Y, Yuan Y, Liang P, Zhang Z, Guo X, Xia L, Zhao Y, Shu XS, Sun S, Ying Y and Cheng Y: Overexpression of a novel candidate oncogene KIF14 correlates with tumor progression and poor prognosis in prostate cancer. Oncotarget. 11:45459–45469. 2017. | |
Yin Y, Liu W and Dai Y: SOCS3 and its role in associated diseases. Hum Immunol. 76:775–780. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Xiong D, Xiao R and Huang Z: Prognostic role of fibroblast growth factor receptor 2 in human solid tumors: A systematic review and meta-analysis. Tumour Biol. 39:10104283177074242017. View Article : Google Scholar : PubMed/NCBI | |
Chakravarti N, Ivan D, Trinh VA, Glitza IC, Curry JL, Torres-Cabala C, Tetzlaff MT, Bassett RL, Prieto VG and Hwu WJ: High cytotoxic T-lymphocyte-associated antigen 4 and phospho-Akt expression in tumor samples predicts poor clinical outcomes in ipilimumab-treated melanoma patients. Melanoma Res. 27:24–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
McConnell AT, Ellis R, Pathy B, Plummer R, Lovat PE and O'Boyle G: The prognostic significance and impact of the CXCR4-CXCR7-CXCL12 axis in primary cutaneous melanoma. Br J Dermatol. 175:1210–1220. 2016. View Article : Google Scholar : PubMed/NCBI | |
Houben R, Hesbacher S, Schmid CP, Kauczok CS, Flohr U, Haferkamp S, Müller CS, Schrama D, Wischhusen J and Becker JC: High-level expression of wild-type p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS One. 6:e220962011. View Article : Google Scholar : PubMed/NCBI | |
Chang CY, Lin SC, Su WH, Ho CM and Jou YS: Somatic LMCD1 mutations promoted cell migration and tumor metastasis in hepatocellular carcinoma. Oncogene. 24:2640–2652. 2012. View Article : Google Scholar | |
Zhou H, Ma H, Wei W, Ji D, Song X, Sun J, Zhang J and Jia L: B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1. Cell Death Dis. 4:e6542013. View Article : Google Scholar : PubMed/NCBI | |
Joyce CE, Yanez AG, Mori A, Yoda A, Carroll JS and Novina CD: Differential regulation of the melanoma proteome by eIF4A1 and eIF4E. Cancer Res. 1:613–622. 2017. View Article : Google Scholar | |
Huber O and Weiske J: Beta-catenin takes a HIT. Cell Cycle. 7:1326–1331. 2008. View Article : Google Scholar : PubMed/NCBI | |
Udayappan UK and Casey PJ: c-Jun contributes to transcriptional control of GNA12 expression in prostate cancer cells. Molecules. 22:E6122017. View Article : Google Scholar : PubMed/NCBI | |
Li N, Huang D, Lu N and Luo L: Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol Rep. 34:2821–2826. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Fukunaga-Kalabis M, Li L and Herlyn M: Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys. 1:13–21. 2014. View Article : Google Scholar | |
Mendez P and Ramirez JL: Copy number gains of FGFR1 and 3q chromosome in squamous cell carcinoma of the lung. Transl Lung Cancer Res. 2:101–111. 2013.PubMed/NCBI | |
Shahi MH, Lorente A and Castresana JS: Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma. Oncol Rep. 19:681–688. 2008.PubMed/NCBI | |
Louie MC, Revenko AS, Zou JX, Yao J and Chen HW: Direct control of cell cycle gene expression by proto-oncogene product ACTR, and its autoregulation underlies its transforming activity. Mol Cell Biol. 26:3810–3823. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Zhang S, Wang Z, Yang C, Ouyang W, Zhou F, Zhou Y and Xie C: Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth. Oncotarget. 7:79515–79525. 2016. View Article : Google Scholar : PubMed/NCBI | |
McDonald SL, Edington HD, Kirkwood JM and Becker D: Expression analysis of genes identified by molecular profiling of VGP melanomas and MGP melanoma-positive lymph nodes. Cancer Biol Ther. 3:110–120. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma XH, Piao S, Wang D, McAfee QW, Nathanson KL, Lum JJ, Li LZ and Amaravadi RK: Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res. 17:3478–3489. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kang HY, Chung E, Lee M, Cho Y and Kang WH: Expression and function of peroxisome proliferator-activated receptors in human melanocytes. Br J Dermatol. 150:462–468. 2004. View Article : Google Scholar : PubMed/NCBI | |
Botton T, Puissant A, Bahadoran P, Annicotte JS, Fajas L, Ortonne JP, Gozzerino G, Zamoum T, Tartare-Deckert S, Bertolotto C, et al: In vitro and in vivo anti-melanoma effects of ciglitazone. J Invest Dermatol. 129:1208–1218. 2009. View Article : Google Scholar : PubMed/NCBI | |
Haass NK and Herlyn M: Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc. 10:153–163. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lyons J, Bastian BC and McCormick F: MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells. Proc Natl Acad Sci USA. 110:13845–13850. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pierrat MJ, Marsaud V, Mauviel A and Javelaud D: Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. J Biol Chem. 287:17996–18004. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakase H, Uza N, Matsuura M and Chiba T: Importance of CXCL16 as a biomarker for granulocytapheresis in patients with Crohn's disease. Inflamm Bowel Dis. 17:2211–2212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shahzad A, Knapp M, Lang I and Köhler G: Interleukin 8 (IL-8)-a universal biomarker? Int Arch Med. 3:112010. View Article : Google Scholar : PubMed/NCBI | |
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. | |
Morse MA: Technology evaluation: Ipilimumab, Medarex/Bristol-Myers Squibb. Curr Opin Mol Ther. 7:588–597. 2005.PubMed/NCBI | |
Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P and Hodes RJ: Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science. 262:905–907. 1993. View Article : Google Scholar : PubMed/NCBI | |
Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Falà F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, et al: CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer. 117:538–550. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo X, He Y, Gao W and Mao H: CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. 8:13703–13715. 2017.PubMed/NCBI | |
Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, et al: Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science. 332:600–603. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhang R, Li S and Liu J: IDO1: An important immunotherapy target in cancer treatment. Int Immunopharmacol. 47:70–77. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang PY, Guo SS, Zhang Y, Lu JB, Chen QY, Tang LQ, Zhang L, Liu LT, Zhang L and Mai HQ: Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget. 7:13060–13068. 2016.PubMed/NCBI | |
Zhang XF, Pan K, Weng DS, Chen CL, Wang QJ, Zhao JJ, Pan QZ, Liu Q, Jiang SS, Li YQ, et al: Cytotoxic T lymphocyte antigen-4 expression in esophageal carcinoma: Implications for prognosis. Oncotarget. 7:26670–26679. 2016.PubMed/NCBI | |
Mao H1, Zhang L, Yang Y, Zuo W, Bi Y, Gao W, Deng B, Sun J, Shao Q and Qu X: New insights of CTLA-4 into its biological function in breast cancer. Curr Cancer Drug Targets. 10:728–736. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ward FJ, Dahal LN, Wijesekera SK, Abdul-Jawad SK, Kaewarpai T, Xu H, Vickers MA and Barker RN: The soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur J Immunol. 43:1274–1285. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML and Puccetti P: Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 4:1206–1212. 2003. View Article : Google Scholar : PubMed/NCBI |