1
|
Zhang HX, Wang ZT, Lu XX, Wang YG, Zhong J
and Liu J: NLRP3 gene is associated with ulcerative colitis (UC),
but not Crohn's disease (CD), in Chinese Han population. Inflamm
Res. 63:979–985. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zaki MH, Lamkanfi M and Kanneganti TD: The
Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends
Immunol. 32:171–179. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bank S, Andersen PS, Burisch J, Pedersen
N, Roug S, Galsgaard J, Turino SY, Brodersen JB, Rashid S,
Rasmussen BK, et al: Genetically determined high activity of IL-12
and IL-18 in ulcerative colitis and TLR5 in Crohns disease were
associated with non-response to anti-TNF therapy. Pharmacogenomics
J. 18:87–97. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bauer C, Duewell P, Mayer C, Lehr HA,
Fitzgerald KA, Dauer M, Tschopp J, Endres S, Latz E and Schnurr M:
Colitis induced in mice with dextran sulfate sodium (DSS) is
mediated by the NLRP3 inflammasome. Gut. 59:1192–1199. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Engler DB, Leonardi I, Hartung ML, Kyburz
A, Spath S, Becher B, Rogler G and Müller A: Helicobacter
pylori-specific protection against inflammatory bowel disease
requires the NLRP3 inflammasome and IL-18. Inflamm Bowel Dis.
21:854–861. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu
C, Chen Y, Cai W and Wu J: Chenodeoxycholic acid activates NLRP3
inflammasome and contributes to cholestatic liver fibrosis.
Oncotarget. 7:83951–83963. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ten Hove T, Corbaz A, Amitai H, Aloni S,
Belzer I, Graber P, Drillenburg P, van Deventer SJ, Chvatchko Y and
Te Velde AA: Blockade of endogenous IL-18 ameliorates TNBS-induced
colitis by decreasing local TNF-alpha production in mice.
Gastroenterology. 121:1372–1379. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Inoue A, Mizushima T, Wu X, Okuzaki D,
Kambara N, Ishikawa S, Wang J, Qian Y, Hirose H, Yokoyama Y, et al:
A miR-29b byproduct sequence exhibits potent tumor-suppressive
activities via inhibition of NF-kappaB signaling in KRAS-mutant
colon cancer cells. Mol Cancer Ther. 17:977–987. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang N, Zhang Y and Liang H: microRNA-598
inhibits cell proliferation and invasion of glioblastoma by
directly targeting metastasis associated in colon cancer-1. Oncol
Res. 2018, Feb 14. Doi: 10.3727/096504018X15185735627746.
View Article : Google Scholar
|
10
|
Bruusgaard A and Andersen RB:
Chenodeoxycholic-acid treatments of rheumatoid arthritis. Lancet.
1:7001976. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li Q, Hu X, Xuan Y, Ying J, Fei Y, Rong J,
Zhang Y, Zhang J, Liu C and Liu Z: Kaempferol protects
ethanol-induced gastric ulcers in mice via pro-inflammatory
cytokines and NO. Acta Biochim Biophys Sin (Shanghai). 50:246–253.
2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Park GB, Chung YH, Gong JH, Jin DH and Kim
D: GSK-3β-mediated fatty acid synthesis enhances epithelial to
mesenchymal transition of TLR4-activated colorectal cancer cells
through regulation of TAp63. Int J Oncol. 49:2163–2172. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Martínez-Martínez E, Martín-Ruiz A, Martín
P, Calvo V, Provencio M and García JM: CB2 cannabinoid receptor
activation promotes colon cancer progression via AKT/GSK3beta
signaling pathway. Oncotarget. 7:68781–68791. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jendželovský R, Koval J, Mikeš J, Papčová
Z, Plšíková J and Fedoročko P: Inhibition of GSK-3beta reverses the
pro-apoptotic effect of proadifen (SKF-525A) in HT-29 colon
adenocarcinoma cells. Toxicol In Vitro. 26:775–782. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Jamwal G, Singh G, Dar MS, Singh P, Bano
N, Syed SH, Sandhu P, Akhter Y, Monga SP and Dar MJ: Identification
of a unique loss-of-function mutation in IGF1R and a crosstalk
between IGF1R and Wnt/β-catenin signaling pathways. Biochim Biophys
Acta. 1865:920–931. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang W, Li Y, Chen Y, Chen H, Zhu P, Xu M,
Wang H, Wu M, Yang Z, Hoffman RM and Gu Y: Ethanolic extract of
traditional chinese medicine (TCM) gamboge inhibits colon cancer
via the Wnt/beta-catenin signaling pathway in an orthotopic mouse
model. Anticancer Res. 38:1917–1925. 2018.PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lazaridis LD, Pistiki A,
Giamarellos-Bourboulis EJ, Georgitsi M, Damoraki G, Polymeros D,
Dimitriadis GD and Triantafyllou K: Activation of NLRP3
inflammasome in inflammatory bowel disease: Differences between
crohn's disease and ulcerative colitis. Dig Dis Sci. 62:2348–2356.
2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Itani S, Watanabe T, Nadatani Y, Sugimura
N, Shimada S, Takeda S, Otani K, Hosomi S, Nagami Y, Tanaka F, et
al: NLRP3 inflammasome has a protective effect against
oxazolone-induced colitis: A possible role in ulcerative colitis.
Sci Rep. 6:390752016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi EM: Kaempferol protects MC3T3-E1
cells through antioxidant effect and regulation of mitochondrial
function. Food Chem Toxicol. 49:1800–1805. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen X, Yan L, Guo Z, Chen Y, Li M, Huang
C, Chen Z and Meng X: Chenodeoxycholic acid attenuates high-fat
diet-induced obesity and hyperglycemia via the G protein-coupled
bile acid receptor 1 and proliferator-activated receptor γ pathway.
Exp Ther Med. 14:5305–5312. 2017.PubMed/NCBI
|
22
|
Hirano Y, Hirano F, Fujii H and Makino I:
Fibrates suppress chenodeoxycholic acid-induced RANTES expression
through inhibition of NF-kappaB activation. Eur J Pharmacol.
448:19–26. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen X, Qian J, Wang L, Li J, Zhao Y, Han
J, Khan Z, Chen X, Wang J and Liang G: Kaempferol attenuates
hyperglycemia-induced cardiac injuries by inhibiting inflammatory
responses and oxidative stress. Endocrine. 60:83–94. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim SH, Park JG, Lee J, Yang WS, Park GW,
Kim HG, Yi YS, Baek KS, Sung NY, Hossen MJ, et al: The dietary
flavonoid Kaempferol mediates anti-inflammatory responses via the
Src, Syk, IRAK1, and IRAK4 molecular targets. Mediators Inflamm.
2015:9041422015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li R, Liu J, Li Q, Chen G and Yu X:
miR-29a suppresses growth and metastasis in papillary thyroid
carcinoma by targeting AKT3. Tumour Biol. 37:3987–3996. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhuang Z, Ye G and Huang B: Kaempferol
Alleviates the Interleukin-1β-induced inflammation in rat
osteoarthritis chondrocytes via suppression of NF-kappaB. Med Sci
Monit. 23:3925–3931. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cheng X, Yang YL, Yang H, Wang YH and Du
GH: Kaempferol alleviates LPS-induced neuroinflammation and BBB
dysfunction in mice via inhibiting HMGB1 release and
down-regulating TLR4/MyD88 pathway. Int Immunopharmacol. 56:29–35.
2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shen H, Li L, Yang S, Wang D, Zhong S,
Zhao J and Tang J: MicroRNA-29a contributes to drug-resistance of
breast cancer cells to adriamycin through PTEN/AKT/GSK3β signaling
pathway. Gene. 593:84–90. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Basu A, Das AS, Sharma M, Pathak MP,
Chattopadhyay P, Biswas K and Mukhopadhyay R: STAT3 and NF-kappaB
are common targets for kaempferol-mediated attenuation of COX-2
expression in IL-6-induced macrophages and carrageenan-induced
mouse paw edema. Biochem Biophys Rep. 12:54–61. 2017.PubMed/NCBI
|
30
|
Merhi A, de Mees C, Abdo R, Victoria
Alberola J and Marini AM: Wnt/β-catenin signaling regulates the
expression of the ammonium permease gene RHBG in human cancer
cells. PLoS One. 10:e01286832015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mervai Z, Sólyomváry A, Tóth G, Noszál B,
Molnár-Perl I, Baghy K, Kovalszky I and Boldizsár I: Endogenous
enzyme-hydrolyzed fruit of Cirsium brachycephalum: Optimal source
of the antiproliferative lignan trachelogenin regulating the
Wnt/beta-catenin signaling pathway in the SW480 colon
adenocarcinoma cell line. Fitoterapia. 100:19–26. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Voloshanenko O, Erdmann G, Dubash TD,
Augustin I, Metzig M, Moffa G, Hundsrucker C, Kerr G, Sandmann T,
Anchang B, et al: Wnt secretion is required to maintain high levels
of Wnt activity in colon cancer cells. Nat Commun. 4:26102013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Nagano H, Tomimaru Y, Eguchi H, Hama N,
Wada H, Kawamoto K, Kobayashi S, Mori M and Doki Y: MicroRNA-29a
induces resistance to gemcitabine through the Wnt/β-catenin
signaling pathway in pancreatic cancer cells. Int J Oncol.
43:1066–1072. 2013. View Article : Google Scholar : PubMed/NCBI
|