The impact of inflammation and cytokine expression of PM2.5 in AML
- Authors:
- Tingting Chen
- Juan Zhang
- Hui Zeng
- Yue Zhang
- Yong Zhang
- Xiaohuan Zhou
- Dong Zhao
- Yingmei Feng
- Hebing Zhou
-
Affiliations: Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China - Published online on: June 13, 2018 https://doi.org/10.3892/ol.2018.8965
- Pages: 2732-2740
This article is mentioned in:
Abstract
Henriquez G and Urrea C: Association between air pollution and emergency consultations for respiratory diseases. Rev Med Chil. 145:1371–1377. 2017.(In Spanish). PubMed/NCBI | |
Rabiei K, Hosseini SM, Sadeghi E, Jafari-Koshki T, Rahimi M, Shishehforoush M, Lahijanzadeh A, Sadeghian B, Moazam E, Mohebi MB, et al: Air pollution and cardiovascular and respiratory disease: Rationale and methodology of CAPACITY study. ARYA Atheroscler. 13:264–273. 2017.PubMed/NCBI | |
Trnjar K, Pintarić S, Mornar Jelavić M, Nesek V, Ostojić J, Pleština S, Šikić A and Pintarić H: Correlation between occurrence and deterioration of respiratory diseases and air pollution within the legally permissible limits. Acta Clin Croat. 56:210–217. 2017. View Article : Google Scholar : PubMed/NCBI | |
Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, Malkawi M, Momeniha F, Gholampour A, Hassanvand MS and Naddafi K: Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006–2015. Environ Int. 114:37–49. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kolpakova AF, Sharipov RN and Kolpakov FA: Air pollution by particulate matter as the risk factor for the cardiovascular diseases. Gig Sanit. 96:133–137. 2017.PubMed/NCBI | |
Stachyra K, Kiepura A and Olszanecki R: Air pollution and atherosclerosis-a brief review of mechanistic links between atherogenesis and biological actions of inorganic part of particulate matter. Folia Med Cracov. 57:37–46. 2017.PubMed/NCBI | |
Hüls A, Vierkötter A, Sugiri D, Abramson MJ, Ranft U, Krämer U and Schikowski T: The role of air pollution and lung function in cognitive impairment. Eur Respir J. 51:17019632018. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Kim J, Kim S, Kang SH, Kim HJ, Kim H, Heo J, Yi SM, Kim K, Youn TJ and Chae IH: Cardiovascular effects of long-term exposure to air pollution: A population-based study with 900 845 person-years of follow-up. J Am Heart Assoc. 6:e0071702017. View Article : Google Scholar : PubMed/NCBI | |
Brunekreef B and Holgate ST: Air pollution and health. Lancet. 360:1233–1242. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li R, Kou X, Geng H, Xie J, Tian J, Cai Z and Dong C: Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. J Hazard Mater. 287:392–401. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Tu Y, Yu Z and Lu R: PM2.5 and cardiovascular diseases in the elderly: An overview. Int J Environ Res Public Health. 12:8187–8197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dabass A, Talbott EO, Venkat A, Rager J, Marsh GM, Sharma RK and Holguin F: Association of exposure to particulate matter (PM2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001–2008). Int J Hyg Environ Health. 219:301–310. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang A, Janssen NA, Brunekreef B, Cassee FR, Hoek G and Gehring U: Children's respiratory health and oxidative potential of PM2.5: The PIAMA birth cohort study. Occup Environ Med. 73:154–160. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brosselin P, Rudant J, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken B, Robert A, Michel G, Margueritte G, et al: Acute childhood leukaemia and residence next to petrol stations and automotive repair garages: The ESCALE study (SFCE). Occup Environ Med. 66:598–606. 2009. View Article : Google Scholar : PubMed/NCBI | |
Steffen C, Auclerc MF, Auvrignon A, Baruchel A, Kebaili K, Lambilliotte A, Leverger G, Sommelet D, Vilmer E, Hémon D and Clavel J: Acute childhood leukaemia and environmental exposure to potential sources of benzene and other hydrocarbons; a case-control study. Occup Environ Med. 61:773–778. 2004. View Article : Google Scholar : PubMed/NCBI | |
Raaschou-Nielsen O, Ketzel M, Poulsen Harbo A and Sørensen M: Traffic-related air pollution and risk for leukaemia of an adult population. Int J Cancer. 138:1111–1117. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA and Martelli AM: Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 1863:449–463. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kumar B, Garcia M, Murakami JL and Chen CC: Exosome-mediated microenvironment dysregulation in leukemia. Biochim Biophys Acta. 1863:464–470. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin XT, Chen ML, Li RJ, An Q, Song L, Zhao Y, Xiao H, Cheng L and Li ZY: Progression and inflammation of human myeloid leukemia induced by ambient PM2.5 exposure. Arch Toxicol. 90:1929–1938. 2016. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Castro-Jimenez MÁ and Orozco-Vargas LC: Parental exposure to carcinogens and risk for childhood acute lymphoblastic leukemia, Colombia, 2000–2005. Prev Chronic Dis. 8:A1062011.PubMed/NCBI | |
McHale CM, Zhang L and Smith MT: Current understanding of the mechanism of benzene-induced leukemia in humans: Implications for risk assessment. Carcinogenesis. 33:240–252. 2012. View Article : Google Scholar : PubMed/NCBI | |
Filippini T, Heck JE, Malagoli C, Del Giovane C and Vinceti M: A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 33:36–66. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Rajappa M, Satyam A and Sharma M: Cytokines (TH1 and TH2) in patients with advanced cervical cancer undergoing neoadjuvant chemoradiation: Correlation with treatment response. Int J Gynecol Cancer. 19:1269–1275. 2009. View Article : Google Scholar : PubMed/NCBI | |
Becker Y: Molecular immunological approaches to biotherapy of human cancers-a review, hypothesis and implications. Anticancer Res. 26:1113–1134. 2006.PubMed/NCBI | |
Min G: Interleukin-2 and its application in the treatment of patients with acute myelogenous leukemia. J Leukemia Lymphoma. 17:152–155. 2008.(In Chinese). | |
Shouval DS, Ouahed J, Biswas A, Goettel JA, Horwitz BH, Klein C, Muise AM and Snapper SB: Interleukin 10 receptor signaling: Master regulator of intestinal mucosal homeostasis in mice and humans. Adv Immunol. 122:177–210. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qing Yang ZL: Interleukin family cytokines and stem cell mobilization. Chin J Comp Med. 21:62–65. 2011.(In Chinese). | |
Lobo-Silva D, Carriche GM, Castro AG, Roque S and Saraiva M: Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation. 13:2972016. View Article : Google Scholar : PubMed/NCBI | |
de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H and de Vries JE: Interleukin-10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 174:915–924. 1991. View Article : Google Scholar : PubMed/NCBI | |
Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, Blaisdell S, Basham B, Dai J, Grein J, et al: IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell. 20:781–796. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ma Y, Fang Y, Wu S, Liu L, Fu D and Shen X: Regulatory T cell: A protection for tumour cells. J Cell Mol Med. 16:425–436. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tanikawa T, Wilke CM, Kryczek I, Chen GY, Kao J, Núñez G and Zou W: Interleukin-10 ablation promotes tumor development, growth, and metastasis. Cancer Res. 72:420–429. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mocellin S, Marincola F, Rossi CR, Nitti D and Lise M: The multifaceted relationship between IL-10 and adaptive immunity: Putting together the pieces of a puzzle. Cytokine Growth Factor Rev. 15:61–76. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mittal SK and Roche PA: Suppression of antigen presentation by IL-10. Curr Opin Immunol. 34:22–27. 2015. View Article : Google Scholar : PubMed/NCBI | |
Han L, Yang J, Wang X, Li D, Lv L and Li B: Th17 cells in autoimmune diseases. Front Med. 9:10–19. 2015. View Article : Google Scholar : PubMed/NCBI | |
Housseau F, Wu S, Wick EC, Fan H, Wu X, Llosa NJ, Smith KN, Tam A, Ganguly S, Wanyiri JW, et al: Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res. 76:2115–2124. 2016. View Article : Google Scholar : PubMed/NCBI | |
Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP and Chiplunkar SV: IL17 producing γδ T cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer. 139:869–881. 2016. View Article : Google Scholar : PubMed/NCBI | |
Benevides L, da Fonseca DM, Donate PB, Tiezzi DG, De Carvalho DD, de Andrade JM, Martins GA and Silva JS: IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75:3788–3799. 2015. View Article : Google Scholar : PubMed/NCBI | |
Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H and Lotze MT: Interleukin-17 promotes angiogenesis and tumor growth. Blood. 101:2620–2627. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee EJ, Park HJ, Lee IJ, Kim WW, Ha SJ, Suh YG and Seong J: Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds. PLoS One. 9:e1064232014. View Article : Google Scholar : PubMed/NCBI | |
Ju X, Ijaz T, Sun H, Ray S, Lejeune W, Lee C, Recinos A III, Guo DC, Milewicz DM, Tilton RG and Brasier AR: Interleukin-6-signal transducer and activator of transcription-3 signaling mediates aortic dissections induced by angiotensin II via the T-helper lymphocyte 17-interleukin 17 axis in C57BL/6 mice. Arterioscler Thromb Vasc Biol. 33:1612–1621. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kumar P: Natarajan K and Shanmugam N: High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: Molecular mechanisms of IL-17 family gene expression. Cell Signal. 26:528–539. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen XW and Zhou SF: Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis. Drug Des Devel Ther. 9:2941–2946. 2015.PubMed/NCBI | |
Hu Z, Luo D, Wang D, Ma L, Zhao Y and Li L: IL-17 activates the IL-6/STAT3 signal pathway in the proliferation of hepatitis B virus-related hepatocellular carcinoma. Cell Physiol Biochem. 43:2379–2390. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, Wu C, Li SP and Zheng L: Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 50:980–989. 2009. View Article : Google Scholar : PubMed/NCBI | |
Du JW, Xu KY, Fang LY and Qi XL: Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a mouse model of breast cancer. Mol Med Rep. 6:1099–1102. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M and Cheroutre H: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 317:256–260. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Wang S, Wang F, Chen Q, Peng S, Zhang Y, Qian J, Jin J and Xu H: Increased frequencies of T helper type 17 cells in the peripheral blood of patients with acute myeloid leukaemia. Clin Exp Immunol. 158:199–204. 2009. View Article : Google Scholar : PubMed/NCBI | |
Waters JP, Pober JS and Bradley JR: Tumour necrosis factor and cancer. J Pathol. 230:241–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gallipoli P, Pellicano F, Morrison H, Laidlaw K, Allan EK, Bhatia R, Copland M, Jørgensen HG and Holyoake TL: Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation. Blood. 122:3335–3339. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Bañas H, Morgado S, Casado JG, Solana R and Tarazona R: Cytokine profiles in acute myeloid leukemia patients at diagnosis: Survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine. 61:885–891. 2013. View Article : Google Scholar : PubMed/NCBI | |
Potapnev MP, Petyovka NV, Belevtsev MV, Savitskiy VP and Migal NV: Plasma level of tumor necrosis factor-alpha (TNF-alpha) correlates with leukocytosis and biological features of leukemic cells, but not treatment response of children with acute lymphoblastic leukemia. Leuk Lymphoma. 44:1077–1079. 2003. View Article : Google Scholar : PubMed/NCBI | |
Foa R, Massaia M, Cardona S, Tos AG, Bianchi A, Attisano C, Guarini A, di Celle PF and Fierro MT: Production of tumor necrosis factor-alpha by B-cell chronic lymphocytic leukemia cells: A possible regulatory role of TNF in the progression of the disease. Blood. 76:393–400. 1990.PubMed/NCBI | |
Lech-Maranda E, Grzybowska-Izydorczyk O, Wyka K, Mlynarski W, Borowiec M, Antosik K, Cebula-Obrzut B, Makuch-Lasica H, Nowak G, Klimkiewicz-Wojciechowska G, et al: Serum tumor necrosis factor-alpha and interleukin-10 levels as markers to predict outcome of patients with chronic lymphocytic leukemia in different risk groups defined by the IGHV mutation status. Arch Immunol Ther Exp (Warsz). 60:477–486. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z, Koller CA, Kurzrock R, Thomas DA, Faderl S, et al: The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood. 100:1215–1219. 2002.PubMed/NCBI | |
Kupsa T, Vasatova M, Karesova I, Zak P and Horacek JM: Baseline serum levels of multiple cytokines and adhesion molecules in patients with acute myeloid leukemia: Results of a pivotal trial. Exp Oncol. 36:252–257. 2014.PubMed/NCBI | |
Fung FY, Li M, Breunis H, Timilshina N, Minden MD and Alibhai SM: Correlation between cytokine levels and changes in fatigue and quality of life in patients with acute myeloid leukemia. Leuk Res. 37:274–279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hess P, Pihan G, Sawyers CL, Flavell RA and Davis RJ: Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet. 32:201–205. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tsai HJ, Kobayashi S, Izawa K, Ishida T, Watanabe T, Umezawa K, Lin SF and Tojo A: Bioimaging analysis of nuclear factor-κB activity in Philadelphia chromosome-positive acute lymphoblastic leukemia cells reveals its synergistic upregulation by tumor necrosis factor-α-stimulated changes to the microenvironment. Cancer Sci. 102:2014–2021. 2011. View Article : Google Scholar : PubMed/NCBI | |
Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, et al: Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. J Exp Med. 211:1093–1108. 2014. View Article : Google Scholar : PubMed/NCBI |