1
|
Varshney J and Varshney H: Allergic
rhinitis: An overview. Indian J Otolaryngol Head Neck Surg.
67:143–149. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Greiner AN, Hellings PW, Rotiroti G and
Scadding GK: Allergic rhinitis. Lancet. 378:2112–2122. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hong JY, Bae JH, Lee KE, Kim M, Kim MH,
Kang HJ, Park EH, Yoo KS, Jeong SK, Kim KW, et al: Antibody to
FcεRIα suppresses immunoglobulin E binding to high-affinity
receptor i in allergic inflammation. Yonsei Med J. 57:1412–1419.
2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gould HJ, Sutton BJ, Beavil AJ, Beavil RL,
McCloskey N, Coker HA, Fear D and Smurthwaite L: The biology of IGE
and the basis of allergic disease. Annu Rev Immunol. 21:579–628.
2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ciprandi G, Marseglia GL, Castagnoli R,
Valsecchi C, Tagliacarne C, Caimmi S and Licari A: From IgE to
clinical trials of allergic rhinitis. Expert Rev Clin Immunol.
11:1321–1333. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Segovia JA, Chang TH, Winter VT, Coalson
JJ, Cagle MP, Pandranki L, Bose S, Baseman JB and Kannan TR: NLRP3
is a critical regulator of inflammation and innate immune cell
response during mycoplasma pneumoniae infection. Infect Immun.
86:pii: e00548. –17. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pétrilli V, Dostert C, Muruve DA and
Tschopp J: The inflammasome: A danger sensing complex triggering
innate immunity. Curr Opin Immunol. 19:615–622. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Agostini L, Martinon F, Burns K, McDermott
MF, Hawkins PN and Tschopp J: NALP3 forms an IL-1beta-processing
inflammasome with increased activity in Muckle-Wells
autoinflammatory disorder. Immunity. 20:319–325. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dubyak GR: P2×7 receptor regulation of
non-classical secretion from immune effector cells. Cell Microbiol.
14:1697–1706. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ding W, Guo H, Xu C, Wang B, Zhang M and
Ding F: Mitochondrial reactive oxygen species-mediated NLRP3
inflammasome activation contributes to aldosterone-induced renal
tubular cells injury. Oncotarget. 7:17479–17491. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tschopp J and Schroder K: NLRP3
inflammasome activation: The convergence of multiple signalling
pathways on ROS production? Nat Rev Immunol. 10:210–215. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Abais JM, Zhang C, Xia M, Liu Q, Gehr TW,
Boini KM and Li PL: NADPH oxidase-mediated triggering of
inflammasome activation in mouse podocytes and glomeruli during
hyperhomocysteinemia. Antioxid Redox Signal. 18:1537–1548. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bousquet J, Khaltaev N, Cruz AA, Denburg
J, Fokkens WJ, Togias A, Zuberbier T, Baena-Cagnani CE, Canonica
GW, van Weel C, et al: Allergic rhinitis and its impact on asthma
(ARIA) 2008 update (in collaboration with the World Health
Organization, GA(2)LEN and AllerGen). Allergy. 63 Suppl 86:S8–S160.
2008. View Article : Google Scholar
|
14
|
Yildirim YS, Apuhan T, Koçoğlu E, Simşek T
and Kazaz H: High sensitivity C-reactive protein levels in chronic
rhinosinusitis and allergic rhinitis. Kulak Burun Bogaz Ihtis Derg.
21:266–269. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Büyüköztürk S, Gelincik AA, Genç S, Koçak
H, Oneriyidogan Y, Erden S, Dal M and Colakoglu B: Acute phase
reactants in allergic airway disease. Tohoku J Exp Med.
204:209–213. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Steiner I, Sobieska M, Pucher B,
Grzegorowski M and Samborski W: Examination of acute phase proteins
concentrations in children with allergic rhinitis. Ann Acad Med
Stetin. 52:33–37. 2006.(In Polish). PubMed/NCBI
|
17
|
Yalcin AD, Gumuslu S, Parlak GE, Bisgin A,
Yildiz M, Kargi A and Gorczynski RM: Systemic levels of
ceruloplasmin oxidase activity in allergic asthma and allergic
rhinitis. Immunopharmacol Immunotoxicol. 34:1047–1053. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Khan DA: Allergic rhinitis and asthma:
Epidemiology and common pathophysiology. Allergy Asthma Proc.
35:357–361. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Eisenbarth SC, Colegio OR, O'Connor W,
Sutterwala FS and Flavell RA: Crucial role for the Nalp3
inflammasome in the immunostimulatory properties of aluminium
adjuvants. Nature. 453:1122–1126. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Besnard AG, Guillou N, Tschopp J, Erard F,
Couillin I, Iwakura Y, Quesniaux V, Ryffel B and Togbe D: NLRP3
inflammasome is required in murine asthma in the absence of
aluminum adjuvant. Allergy. 66:1047–1057. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Allen IC, Jania CM, Wilson JE, Tekeppe EM,
Hua X, Brickey WJ, Kwan M, Koller BH, Tilley SL and Ting JP:
Analysis of NLRP3 in the development of allergic airway disease in
mice. J Immunol. 188:2884–2893. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kool M, Willart MA, van Nimwegen M, Bergen
I, Pouliot P, Virchow JC, Rogers N, Osorio F, Sousa Reis e C,
Hammad H and Lambrecht BN: An unexpected role for uric acid as an
inducer of T helper 2 cell immunity to inhaled antigens and
inflammatory mediator of allergic asthma. Immunity. 34:527–540.
2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Marichal T, Ohata K, Bedoret D, Mesnil C,
Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ, et al:
DNA released from dying host cells mediates aluminum adjuvant
activity. Nat Med. 17:996–1002. 2011. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Shi Q, Luo S, Jin H, Cai J, Jia H, Feng L
and Lu X: Insulin-producing cells from human adipose tissue-derived
mesenchymal stem cells detected by atomic force microscope. Appl
Microbiol Biotechnol. 94:479–486. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Netea MG, Nold-Petry CA, Nold MF, Joosten
LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G,
Heinhuis B, Devesa I, et al: Differential requirement for the
activation of the inflammasome for processing and release of
IL-1beta in monocytes and macrophages. Blood. 113:2324–2335. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou R, Yazdi AS, Menu P and Tschopp J: A
role for mitochondria in NLRP3 inflammasome activation. Nature.
469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nakahira K, Haspel JA, Rathinam VA, Lee
SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim
HP, et al: Autophagy proteins regulate innate immune responses by
inhibiting the release of mitochondrial DNA mediated by the NALP3
inflammasome. Nat Immunol. 12:222–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu G, Zhang L, Wang DY, Xu R, Liu Z, Han
DM, Wang XD, Zuo KJ and Li HB: Opposing roles of IL-17A and IL-25
in the regulation of TSLP production in human nasal epithelial
cells. Allergy. 65:581–589. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Semik-Orzech A, Barczyk A, Wiaderkiewicz R
and Pierzchala W: Interleukin 17 and RANTES levels in induced
sputum of patients with allergic rhinitis after a single nasal
allergen challenge. Ann Allergy Asthma Immunol. 103:418–424. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Ciprandi G, Fenoglio D, De Amici M,
Quaglini S, Negrini S and Filaci G: Serum IL-17 levels in patients
with allergic rhinitis. J Allergy Clin Immunol. 122:650–651.e2.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ciprandi G, De Amici M, Murdaca G,
Fenoglio D, Ricciardolo F, Marseglia G and Tosca M: Serum
interleukin-17 levels are related to clinical severity in allergic
rhinitis. Allergy. 64:1375–1378. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ciprandi G, Filaci G, Battaglia F and
Fenoglio D: Peripheral Th-17 cells in allergic rhinitis: New
evidence. Int Immunopharmacol. 10:226–229. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Maio S, Baldacci S, Carrozzi L, Pistelli
F, Angino A, Simoni M, Sarno G, Cerrai S, Martini F, Fresta M, et
al: Respiratory symptoms/diseases prevalence is still increasing: A
25-yr population study. Respir Med. 110:58–65. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Long A, McFadden C, DeVine D, Chew P,
Kupelnick B and Lau J: Management of allergic and nonallergic
rhinitis. Evid Rep Technol Assess (Summ). 1–6. 2002.PubMed/NCBI
|
36
|
Meltzer EO: The prevalence and medical and
economic impact of allergic rhinitis in the United States. J
Allergy Clin Immunol. 99:S805–S828. 1997.PubMed/NCBI
|
37
|
Qiu S, Du Y, Duan X, Geng X, Xie J, Gao H
and Yang PC: B cell immunity in allergic nasal mucosa induces T
helper 2 cell differentiation. J Clin Immunol. 32:886–895. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Jayasekera NP, Toma TP, Williams A and
Rajakulasingam K: Mechanisms of immunotherapy in allergic rhinitis.
Biomed Pharmacother. 61:29–33. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ngoc PL, Gold DR, Tzianabos AO, Weiss ST
and Celedón JC: Cytokines, allergy, and asthma. Curr Opin Allergy
Clin Immunol. 5:161–166. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pawankar R, Hayashi M, Yamanishi S and
Igarashi T: The paradigm of cytokine networks in allergic airway
inflammation. Curr Opin Allergy Clin Immunol. 15:41–48. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Sergejeva S, Ivanov S, Lötvall J and
Lindén A: Interleukin-17 as a recruitment and survival factor for
airway macrophages in allergic airway inflammation. Am J Respir
Cell Mol Biol. 33:248–253. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hussein MR, Fathi NA, El-Din AM, Hassan
HI, Abdullah F, Al-Hakeem E and Backer EA: Alterations of the
CD4(+), CD8 (+) T cell subsets, interleukins-1beta, IL-10, IL-17,
tumor necrosis factor-alpha and soluble intercellular adhesion
molecule-1 in rheumatoid arthritis and osteoarthritis: Preliminary
observations. Pathol Oncol Res. 14:321–328. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yasumi Y, Takikawa Y, Endo R and Suzuki K:
Interleukin-17 as a new marker of severity of acute hepatic injury.
Hepatol Res. 37:248–254. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Guo C, Chen G and Ge R: IL-23, rather than
IL-17, is crucial for the development of ovalbumin-induced allergic
rhinitis. Mol Immunol. 67:436–443. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lv H, Lu B, Qian XJ, Huang JA and Qiu TF:
Serum IL-17 & eotaxin levels in asthmatic patients with
allergic rhinitis. Pak J Med Sci. 32:700–704. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kim HY, Lee HJ, Chang YJ, Pichavant M,
Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, et
al: Interleukin-17-producing innate lymphoid cells and the NLRP3
inflammasome facilitate obesity-associated airway hyperreactivity.
Nat Med. 20:54–61. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tsvetkova-Vicheva VM, Gecheva SP,
Komsa-Penkova R, Velkova AS and Lukanov TH: IL-17 producing T cells
correlate with polysensitization but not with bronchial
hyperresponsiveness in patients with allergic rhinitis. Clin Transl
Allergy. 4:32014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Obregon C, Graf L, Chung KF, Cesson V and
Nicod LP: Nitric oxide sustains IL-1β expression in human dendritic
cells enhancing their capacity to induce IL-17-producing T-cells.
PLoS One. 10:e01201342015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li L, Kim J and Boussiotis VA:
IL-1β-mediated signals preferentially drive conversion of
regulatory T cells but not conventional T cells into
IL-17-producing cells. J Immunol. 185:4148–4153. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kim SR, Lee KS, Park SJ, Min KH, Lee MH,
Lee KA, Bartov O, Atlas D and Lee YC: A novel dithiol amide CB3
attenuates allergic airway disease through negative regulation of
p38 mitogen-activated protein kinase. Am J Respir Crit Care Med.
183:1015–1024. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Riedl MA and Nel AE: Importance of
oxidative stress in the pathogenesis and treatment of asthma. Curr
Opin Allergy Clin Immunol. 8:49–56. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ciencewicki J, Trivedi S and Kleeberger
SR: Oxidants and the pathogenesis of lung diseases. J Allergy Clin
Immunol. 122:456–468; quiz 469–470. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Aguilera-Aguirre L, Bacsi A,
Saavedra-Molina A, Kurosky A, Sur S and Boldogh I: Mitochondrial
dysfunction increases allergic airway inflammation. J Immunol.
183:5379–5387. 2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Heinzmann A, Thoma C, Dietrich H and
Deichmann KA: Identification of common polymorphisms in the
mitochondrial genome. Allergy. 58:830–831. 2003. View Article : Google Scholar : PubMed/NCBI
|
55
|
Raby BA, Klanderman B, Murphy A, Mazza S,
Camargo CA Jr, Silverman EK and Weiss ST: A common mitochondrial
haplogroup is associated with elevated total serum IgE levels. J
Allergy Clin Immunol. 120:351–358. 2007. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kim SR, Kim DI, Kim SH, Lee H, Lee KS, Cho
SH and Lee YC: NLRP3 inflammasome activation by mitochondrial ROS
in bronchial epithelial cells is required for allergic
inflammation. Cell Death Dis. 5:e14982014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Naik E and Dixit VM: Mitochondrial
reactive oxygen species drive proinflammatory cytokine production.
J Exp Med. 208:417–420. 2011. View Article : Google Scholar : PubMed/NCBI
|