1
|
GBD 2016 Disease and Injury Incidence and
Prevalence Collaborators. Global, regional, and national incidence,
prevalence, and years lived with disability for 328 diseases and
injuries for 195 countries, 1990–2016: A systematic analysis for
the Global Burden of Disease Study 2016. Lancet. 390:1211–1259.
2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dunlay SM and Roger VL: Understanding the
epidemic of heart failure: Past, present, and future. Curr Heart
Fail Rep. 11:404–415. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lebrin F, Goumans MJ, Jonker L, Carvalho
RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM and ten
Dijke P: Endoglin promotes endothelial cell proliferation and
TGF-beta/ALK1 signal transduction. Embo J. 23:4018–4028. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
McCain ML, Agarwal A, Nesmith HW, Nesmith
AP and Parker KK: Micromolded gelatin hydrogels for extended
culture of engineered cardiac tissues. Biomaterials. 35:5462–5471.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Daniels A, van Bilsen M, Goldschmeding R,
van der Vusse GJ and van Nieuwenhoven FA: Connective tissue growth
factor and cardiac fibrosis. Acta Physiol. 195:321–338. 2009.
View Article : Google Scholar
|
6
|
Fan D, Takawale A, Lee J and Kassiri Z:
Cardiac fibroblasts, fibrosis and extracellular matrix remodeling
in heart disease. Fibrogenesis Tissue Repair. 5:152012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Segura AM, Frazier OH and Buja LM:
Fibrosis and heart failure. Heart Fail Rev. 19:173–185. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Fan D, Takawale A, Basu R, Patel V, Lee J,
Kandalam V, Wang X, Oudit GY and Kassiri Z: Differential role of
TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic
dysfunction. Cardiovasc Res. 103:268–280. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ma Y, Halade GV and Lindsey ML:
Extracellular matrix and fibroblast communication following
myocardial infarction. J Cardiovasc Transl Res. 5:848–857. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang YL, Liu YS, Chuang LY, Guh JY, Lee
TC, Liao TN, Hung MY and Chiang TA: Bone morphogenetic protein-2
antagonizes renal interstitial fibrosis by promoting catabolism of
type I transforming growth factor-beta receptors. Endocrinology.
150:727–740. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zeisberg M, Bottiglio C, Kumar N, Maeshima
Y, Strutz F, Muller GA and Kalluri R: Bone morphogenic protein-7
inhibits progression of chronic renal fibrosis associated with two
genetic mouse models. Am J Physiol Renal Physiol. 285:F1060–F1067.
2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang YL, Ju HZ, Liu SF, Lee TC, Shih YW,
Chuang LY, Guh JY, Yang YY, Liao TN, Hung TJ and Hung MY: BMP-2
suppresses renal interstitial fibrosis by regulating
epithelial-mesenchymal transition. J Cell Biochem. 112:2558–2565.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang S, Sun A, Li L, Zhao G, Jia J, Wang
K, Ge J and Zou Y: Up-regulation of BMP-2 antagonizes
TGF-β1/ROCK-enhanced cardiac fibrotic signalling through activation
of Smurf1/Smad6 complex. J Cell Mol Med. 16:2301–2310. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Flanders KC: Smad3 as a mediator of the
fibrotic response. Int J Exp Pathol. 85:47–64. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim KK, Wei Y, Szekeres C, Kugler MC,
Wolters PJ, Hill ML, Frank JA, Brumwell AN, Wheeler SE, Kreidberg
JA and Chapman HA: Epithelial cell alpha3beta1 integrin links
beta-catenin and Smad signaling to promote myofibroblast formation
and pulmonary fibrosis. J Clin Invest. 119:213–224. 2009.PubMed/NCBI
|
16
|
Lan HY: Diverse roles of TGF-beta/Smads in
renal fibrosis and inflammation. Int J Biol Sci. 7:1056–1067. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bornstein P and Sage EH: Matricellular
proteins: Extracellular modulators of cell function. Curr Opin Cell
Biol. 14:608–616. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vannahme C, Smyth N, Miosge N, Gosling S,
Frie C, Paulsson M, Maurer P and Hartmann U: Characterization of
SMOC-1, a novel modular calcium-binding protein in basement
membranes. J Biol Chem. 277:37977–37986. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gersdorff N, Müller M, Schall A and Miosge
N: Secreted modular calcium-binding protein-1 localization during
mouse embryogenesis. Histochem Cell Biol. 126:705–712. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Thomas JT, Canelos P, Luyten FP and Moos M
Jr: Xenopus SMOC-1 Inhibits bone morphogenetic protein
signaling downstream of receptor binding and is essential for
postgastrulation development in Xenopus. J Biol Chem.
284:18994–19005. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Phillips MI and Kagiyama S: Angiotensin II
as a pro-inflammatory mediator. Curr Opin Investig Drugs.
3:569–577. 2002.PubMed/NCBI
|
23
|
Marshall RP, McAnulty RJ and Laurent GJ:
Angiotensin II is mitogenic for human lung fibroblasts via
activation of the type 1 receptor. Am J Respir Crit Care Med.
161:1999–2004. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Uhal BD, Kim JK, Li X and Molina-Molina M:
Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary
fibrosis: Autocrine mechanisms in myofibroblasts and macrophages.
Curr Pharm Des. 13:1247–1256. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhu M, Chen D, Li D, Ding H, Zhang T, Xu T
and Zhang Y: Luteolin inhibits angiotensin II-induced human
umbilical vein endothelial cell proliferation and migration through
downregulation of Src and Akt phosphorylation. Circ J. 77:772–779.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rosin NL, Sopel M, Falkenham A, Myers TL
and Legare JF: Myocardial migration by fibroblast progenitor cells
is blood pressure dependent in a model of angII myocardial
fibrosis. Hypertens Res. 35:449–456. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang L, Zhu QJ, Zhou W, Ye J, Qian W, Zhu
R, Hu TH and Hou XH: Effect of beta-elemene on the proliferation,
migration and RhoA expression of hepatic stellate cells induced by
angiotensin II. Zhonghua Gan Zang Bing Za Zhi. 16:748–751. 2008.(In
Chinese). PubMed/NCBI
|
28
|
Bradshaw AD: Diverse biological functions
of the SPARC family of proteins. Int J Biochem Cell Biol.
44:480–488. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Choi YA, Lim J, Kim KM, Acharya B, Cho JY,
Bae YC, Shin HI, Kim SY and Park EK: Secretome analysis of human
BMSCs and identification of SMOC1 as an important ECM protein in
osteoblast differentiation. J Proteome Res. 9:2946–2956. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Boon K, Edwards JB, Eberhart CG and
Riggins GJ: Identification of astrocytoma associated genes
including cell surface markers. BMC Cancer. 4:392004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Brellier F, Ruggiero S, Zwolanek D,
Martina E, Hess D, Brown-Luedi M, Hartmann U, Koch M, Merlo A, Lino
M and Chiquet-Ehrismann R: SMOC1 is a tenascin-C interacting
protein over-expressed in brain tumors. Matrix Biol. 30:225–233.
2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schieber M and Chandel NS: ROS function in
redox signaling and oxidative stress. Curr Biol. 24:R453–462. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kliment CR, Englert JM, Gochuico BR, Yu G,
Kaminski N, Rosas I and Oury TD: Oxidative stress alters syndecan-1
distribution in lungs with pulmonary fibrosis. J Biol Chem.
284:3537–3545. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Papaharalambus CA and Griendling KK: Basic
mechanisms of oxidative stress and reactive oxygen species in
cardiovascular injury. Trends Cardiovasc Med. 17:48–54. 2007.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Montezano AC, Callera GE, Yogi A, He Y,
Tostes RC, He G, Schiffrin EL and Touyz RM: Aldosterone and
angiotensin II synergistically stimulate migration in vascular
smooth muscle cells through c-Src-regulated redox-sensitive RhoA
pathways. Arterioscler Thromb Vasc Biol. 28:1511–1518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun B, Huo R, Sheng Y, Li Y, Xie X, Chen
C, Liu HB, Li N, Li CB, Guo WT, et al: Bone morphogenetic protein-4
mediates cardiac hypertrophy, apoptosis, and fibrosis in
experimentally pathological cardiac hypertrophy. Hypertension.
61:352–360. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Voloshenyuk TG, Landesman ES, Khoutorova
E, Hart AD and Gardner JD: Induction of cardiac fibroblast lysyl
oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling.
Cytokine. 55:90–97. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang B, Hao J, Jones SC, Yee MS, Roth JC
and Dixon IM: Decreased Smad 7 expression contributes to cardiac
fibrosis in the infarcted rat heart. Am J Physiol Heart Circ
Physiol. 282:H1685–H1696. 2002. View Article : Google Scholar : PubMed/NCBI
|