1
|
Liedtke C, Mazouni C, Hess KR, André F,
Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B,
Green M, et al: Response to neoadjuvant therapy and long-term
survival in patients with triple-negative breast cancer. J Clin
Oncol. 26:1275–1281. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Foulkes WD, Smith IE and Reis-Filho JS:
Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bonasio R and von Andrian UH: Generation,
migration and function of circulating dendritic cells. Curr Opin
Immunol. 18:503–511. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Celluzzi CM, Mayordomo JI, Storkus WJ,
Lotze MT and Falo LD Jr: Peptide-pulsed dendritic cells induce
antigen-specific CTL-mediated protective tumor immunity. J Exp Med.
183:283–287. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kichler-Lakomy C, Budinsky AC, Wolfram R,
Hellan M, Wiltschke C, Brodowicz T, Viernstein H and Zielinski CC:
Deficiences in phenotype expression and function of dendritic cells
from patients with early breast cancer. Eur J Med Res. 11:7–12.
2006.PubMed/NCBI
|
6
|
Bennaceur K, Chapman J, Brikci-Nigassa L,
Sanhadji K, Touraine JL and Portoukalian J: Dendritic cells
dysfunction in tumour environment. Cancer Lett. 272:186–196. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Bosco MC, Puppo M, Blengio F, Fraone T,
Cappello P, Giovarelli M and Varesio L: Monocytes and dendritic
cells in a hypoxic environment: Spotlights on chemotaxis and
migration. Immunobiology. 213:733–749. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rifkind RA, Hsu KC, Morgan C, Seegal Bc,
Knox Aw and Rose Hm: Use of ferritin-conjugated antibody to
localize antigen by electron microscopy. Nature. 187:1094–1095.
1960. View Article : Google Scholar : PubMed/NCBI
|
9
|
Koido S, Nikrui N, Ohana M, Xia J, Tanaka
Y, Liu C, Durfee JK, Lerner A and Gong J: Assessment of fusion
cells from patient-derived ovarian carcinoma cells and dendritic
cells as a vaccine for clinical use. Gynecol Oncol. 99:462–471.
2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Homma S, Kikuchi T, Ishiji N, Ochiai K,
Takeyama H, Saotome H, Sagawa Y, Hara E, Kufe D, Ryan JL, et al:
Cancer immunotherapy by fusions of dendritic and tumour cells and
rh-IL-12. Eur J Clin Invest. 35:279–286. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Berzofsky JA, Terabe M, Oh S, Belyakov IM,
Ahlers JD, Janik JE and Morris JC: Progress on new vaccine
strategies for the immunotherapy and prevention of cancer. J Clin
Invest. 113:1515–1525. 2004. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Figdor CG, de Vries IJ, Lesterhuis WJ and
Melief CJ: Dendritic cell immunotherapy: Mapping the way. Nat Med.
10:475–480. 2004. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Iwamoto M, Shinohara H, Miyamoto A,
Okuzawa M, Mabuchi H, Nohara T, Gon G, Toyoda M and Tanigawa N:
Prognostic value of tumor-infiltrating dendritic cells expressing
CD83 in human breast carcinomas. Int J Cancer J. 104:92–97. 2003.
View Article : Google Scholar
|
14
|
Zou W: Immunosuppressive networks in the
tumour environment and their therapeutic relevance. Nat Rev Cancer.
5:263–274. 2005. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Blyth K, Vaillant F, Jenkins A, McDonald
L, Pringle MA, Huser C, Stein T, Neil J and Cameron ER: Runx2 in
normal tissues and cancer cells: A developing story. Blood Cells
Mol Dis. 45:117–123. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pratap J, Lian JB and Stein GS: Metastatic
bone disease: Role of transcription factors and future targets.
Bone. 48:30–36. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shore P: A role for Runx2 in normal
mammary gland and breast cancer bone metastasis. J Cell Biochem.
96:484–489. 2010. View Article : Google Scholar
|
18
|
Otto F, Thornell AP, Crompton T, Denzel A,
Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen
BR, et al: Cbfa1, a candidate gene for cleidocranial dysplasia
syndrome, is essential for osteoblast differentiation and bone
development. Cell. 89:765–771. 1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Owens TW, Rogers RL, Best S, Ledger A,
Mooney AM, Ferguson A, Shore P, Swarbrick A, Ormandy CJ, Simpson
PT, et al: Runx2 is a novel regulator of mammary epithelial cell
fate in development and breast cancer. Cancer Res. 74:5277–5286.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pratap J, Imbalzano KM, Underwood JM,
Cohet N, Gokul K, Akech J, van Wijnen AJ, Stein JL, Imbalzano AN,
Nickerson JA, et al: Ectopic runx2 expression in mammary epithelial
cells disrupts formation of normal acini structure: Implications
for breast cancer progression. Cancer Res. 69:6807–6814. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ozaki T, Wu D, Sugimoto H, Nagase H and
Nakagawara A: Runt-related transcription factor 2 (RUNX2) inhibits
p53-dependent apoptosis through the collaboration with HDAC6 in
response to DNA damage. Cell Death Disease. 4:e6102013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mendoza-Villanueva D, Deng W,
Lopez-Camacho C and Shore P: The Runx transcriptional co-activator,
CBFbeta, is essential for invasion of breast cancer cells. Mol
Cancer. 9:1712010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pratap J, Javed A, Languino LR, van Wijnen
AJ, Stein JL, Stein GS and Lian JB: The Runx2 osteogenic
transcription factor regulates matrix metalloproteinase 9 in bone
metastatic cancer cells and controls cell invasion. Mol Cell Biol.
25:8581–8591. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Selvamurugan N, Kwok S and Partridge NC:
Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth
factor-beta1-stimulated collagenase-3 expression in human breast
cancer cells. J Biol Chem. 279:27764–27773. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pratap J, Wixted JJ, Gaur T, Zaidi SK,
Dobson J, Gokul KD, Hussain S, van Wijnen AJ, Stein JL, Stein GS
and Lian JB: Runx2 transcriptional activation of Indian Hedgehog
and a downstream bone metastatic pathway in breast cancer cells.
Cancer Res. 68:7795–7802. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Khalid O, Baniwal SK, Purcell DJ, Leclerc
N, Gabet Y, Stallcup MR, Coetzee GA and Frenkel B: Modulation of
Runx2 activity by estrogen receptor-alpha: Implications for
osteoporosis and breast cancer. Endocrinology. 149:5984–5995. 2008.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chimge NO, Baniwal SK, Luo J, Coetzee S,
Khalid O, Berman BP, Tripathy D, Ellis MJ and Frenkel B: Opposing
effects of Runx2 and estradiol on breast cancer cell proliferation:
In vitro identification of reciprocally regulated gene signature
related to clinical letrozole responsiveness. Clin Cancer Res.
18:901–911. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun L, Vitolo M and Passaniti A:
Runt-related gene 2 in endothelial cells: Inducible expression and
specific regulation of cell migration and invasion. Cancer Res.
61:4994–5001. 2001.PubMed/NCBI
|
29
|
Pierce AD, Anglin IE, Vitolo MI, Mochin
MT, Underwood KF, Goldblum SE, Kommineni S and Passaniti A:
Glucose-activated RUNX2 phosphorylation promotes endothelial cell
proliferation and an angiogenic phenotype. J Cell Biochem.
113:282–292. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chimge NO, Baniwal SK, Little GH, Chen Y,
Kahn M, Tripathy D, Borok Z and Frenkel B: Regulation of breast
cancer metastasis by Runx2 and estrogen signaling: The role of
SNAI2. Breast Cancer Res. 13:R1272011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Herynk MH and Fuqua SA: Estrogen receptor
mutations in human disease. Endocr Rev. 25:869–898. 2004.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Das K, Leong DT, Gupta A, Shen L, Putti T,
Stein GS, van Wijnen AJ and Salto-Tellez M: Positive association
between nuclear Runx2 and oestrogen-progesterone receptor gene
expression characterises a biological subtype of breast cancer. Eur
J Cancer. 45:2239–2248. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito
K, Inoue M, Putti TC, Loh M, Ko TK, Huang C, et al: Runx3 is
frequently inactivated by dual mechanisms of protein
mislocalization and promoter hypermethylation in breast cancer.
Cancer Res. 66:6512–6520. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tandon M, Chen Z and Pratap J: Runx2
activates PI3K/Akt signaling via mTORC2 regulation in invasive
breast cancer cells. Breast Cancer Res. 16:R162014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
McDonald L, Ferrari N, Terry A, Bell M,
Mohammed ZM, Orange C, Jenkins A, Muller WJ, Gusterson BA, Neil JC,
et al: RUNX2 correlates with subtype-specific breast cancer in a
human tissue microarray, and ectopic expression of Runx2 perturbs
differentiation in the mouse mammary gland. Dis Model Mech.
7:525–534. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
He Y, Zhang J, Mi Z, Robbins P and Falo LD
Jr: Immunization with lentiviral vector-transduced dendritic cells
induces strong and long-lasting T cell responses and therapeutic
immunity. J Immunol. 174:3808–3817. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nagaraja GM, Othman M, Fox BP, Alsaber R,
Pellegrino CM, Zeng Y, Khanna R, Tamburini P, Swaroop A and Kandpal
RP: Gene expression signatures and biomarkers of noninvasive and
invasive breast cancer cells: Comprehensive profiles by
representational difference analysis, microarrays and proteomics.
Oncogene. 25:2328–2338. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Barnes GL, Javed A, Waller SM, Kamal MH,
Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian
JB, et al: Osteoblast-related transcription factors Runx2
(Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein
in human metastatic breast cancer cells. Cancer Res. 63:2631–2637.
2003.PubMed/NCBI
|
40
|
Kouros-Mehr H and Werb Z: Candidate
regulators of mammary branching morphogenesis identified by
genome-wide transcript analysis. Dev Dyn. 235:3404–3412. 2006.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Hillenbrand EE, Neville AM and Coventry
BJ: Immunohistochemical localization of CD1a-positive putative
dendritic cells in human breast tumours. Br J Cancer. 79:940–944.
1999. View Article : Google Scholar : PubMed/NCBI
|
42
|
Banchereau J and Palucka AK: Dendritic
cells as therapeutic vaccines against cancer. Nat Rev Immunol.
5:296–306. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hegde NR, Chevalier MS and Johnson DC:
Viral inhibition of MHC class II antigen presentation. Trends
Immunol. 24:278–285. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Alcami A, Ghazal P and Yewdell JW: Viruses
in control of the immune system. Workshop on molecular mechanisms
of immune modulation: Lessons from viruses. EMBO Rep. 3:927–932.
2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yewdell JW and Hill AB: Viral interference
with antigen presentation. Nature Immunol. 3:1019–1025. 2002.
View Article : Google Scholar
|
46
|
Follenzi A and Naldini L: Generation of
HIV-1 derived lentiviral vectors. Methods Enzymol. 346:454–465.
2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Morelli AE, Larregina AT, Ganster RW,
Zahorchak AF, Plowey JM, Takayama T, Logar AJ, Robbins PD, Falo LD
and Thomson AW: Recombinant adenovirus induces maturation of
dendritic cells via an NF-kappaB-dependent pathway. J Virol.
74:9617–9628. 2000. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hwang ML, Lukens JR and Bullock TN:
Cognate memory CD4+ T cells generated with dendritic cell priming
influence the expansion, trafficking, and differentiation of
secondary CD8+ T cells and enhance tumor control. J Immunol.
179:5829–5838. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Jiang Y, Li Y and Zhu B: T-cell exhaustion
in the tumor microenvironment. Cell Death Dis. 6:e17922015.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Guerder S and Matzinger P: A fail-safe
mechanism for maintaining self-tolerance. J Exp Med. 176:553–564.
1992. View Article : Google Scholar : PubMed/NCBI
|
51
|
Romagnani S: Human TH1 and TH2 subsets:
Doubt no more. Immunol Today. 12:256–257. 1991. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM
and Huang SC: Predominant Th2/Tc2 Polarity of tumor-infiltrating
lymphocytes in human cervical cancer. J Immunol. 167:2972–2978.
2001. View Article : Google Scholar : PubMed/NCBI
|
53
|
Palucka K and Banchereau J: Cancer
immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277.
2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Huang H, Hao S, Li F, Ye Z, Yang J and
Xiang J: CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory
response, tumor localizationand therapy by targeted delivery of
interleukin 2 via acquired pMHC I complexes. Immunology.
120:148–159. 2007. View Article : Google Scholar : PubMed/NCBI
|
55
|
Knutson KL and Disis ML: Tumor
antigen-specific T helper cells in cancer immunity and
immunotherapy. Cancer Immunol Immunother. 54:721–728. 2005.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Savai R, Schermuly RT, Pullamsetti SS,
Schneider M, Greschus S, Ghofrani HA, Traupe H, Grimminger F and
Banat GA: A combination hybrid-based vaccination/adoptive cellular
therapy to prevent tumor growth by involvement of T cells. Cancer
Res. 67:5443–5453. 2007. View Article : Google Scholar : PubMed/NCBI
|
57
|
Trinchieri G: Interleukin-12 and the
regulation of innate resistance and adaptive immunity. Nat Rev
Immunol. 3:133–146. 2003. View Article : Google Scholar : PubMed/NCBI
|
58
|
Janssen EM, Lemmens EE, Wolfe T, Christen
U, von Herrath MG and Schoenberger SP: CD4+ T cells are required
for secondary expansion and memory in CD8+ T lymphocytes. Nature.
421:852–856. 2003. View Article : Google Scholar : PubMed/NCBI
|
59
|
Zobywalski A, Javorovic M, Frankenberger
B, Pohla H, Kremmer E, Bigalke I and Schendel DJ: Generation of
clinical grade dendritic cells with capacity to produce
biologically active IL-12p70. J Transl Med. 5:182007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Zhang P, Yi S, Li X, Liu R, Jiang H, Huang
Z, Liu Y, Wu J and Huang Y: Preparation of triple-negative breast
cancer vaccine through electrofusion with day-3 dendritic cells.
PLoS One. 9:e1021972014. View Article : Google Scholar : PubMed/NCBI
|