1
|
Molyneux EM, Rochford R, Griffin B, Newton
R, Jackson G, Menon G, Harrison CJ, Israels T and Bailey S:
Burkitt's lymphoma. Lancet. 379:1234–1244. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Naresh KN, Raphael M, Ayers L, Hurwitz N,
Calbi V, Rogena E, Sayed S, Sherman O, Ibrahim HA, Lazzi S, et al:
Lymphomas in sub-Saharan Africa-what can we learn and how can we
help in improving diagnosis, managing patients and fostering
translational research? Br J Haematol. 154:696–703. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Stefan C, Bray F, Ferlay J, Liu B and
Parkin Maxwell D: Cancer of childhood in sub-Saharan Africa.
Ecancermedicalscience. 11:7552017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hobert O: Gene regulation by transcription
factors and microRNAs. Science. 319:1785–1786. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Latchman DS: Transcription factors: An
overview. Int J Biochem Cell Biol. 29:1305–1312. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Karin M: Too many transcription factors:
Positive and negative interactions. New Biol. 2:126–131.
1990.PubMed/NCBI
|
7
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ha TY: MicroRNAs in human diseases: From
cancer to cardiovascular disease. Immune Netw. 11:135–154. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lee YS and Dutta A: MicroRNAs in cancer.
Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Su N, Wang Y, Qian M and Deng M:
Combinatorial regulation of transcription factors and microRNAs.
BMC Syst Biol. 4:1502010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li K, Li Z, Zhao N and Xu Y, Liu Y, Zhou
Y, Shang D, Qiu F, Zhang R, Chang Z and Xu Y: Functional analysis
of microRNA and transcription factor synergistic regulatory network
based on identifying regulatory motifs in non-small cell lung
cancer. BMC Syst Biol. 7:1222013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hsieh WT, Tzeng KR, Ciou JS, Tsai JJ,
Kurubanjerdjit N, Huang CH and Ng KL: Transcription factor and
microRNA-regulated network motifs for cancer and signal
transduction networks. BMC Syst Biol. 9 Suppl 1:S52015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang HM, Kuang S, Xiong X, Gao T, Liu C
and Guo AY: Transcription factor and microRNA co-regulatory loops:
Important regulatory motifs in biological processes and diseases.
Brief Bioinform. 16:45–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hobert O: Architecture of a
microRNA-controlled gene regulatory network that diversifies
neuronal cell fates. Cold Spring Harb Symp Quant Biol. 71:181–188.
2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li X, Cassidy JJ, Reinke CA, Fischboeck S
and Carthew RW: A microRNA imparts robustness against environmental
fluctuation during development. Cell. 137:273–282. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tsang J, Zhu J and van Oudenaarden A:
MicroRNA-mediated feedback and feedforward loops are recurrent
network motifs in mammals. Mol Cell. 26:753–767. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rodriguez A, Griffiths-Jones S, Ashurst JL
and Bradley A: Identification of mammalian microRNA host genes and
transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Baskerville S and Bartel DP: Microarray
profiling of microRNAs reveals frequent coexpression with
neighboring miRNAs and host genes. RNA. 11:241–247. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Cao G, Huang B, Liu Z, Zhang J, Xu H, Xia
W, Li J, Li S, Chen L, Ding H, et al: Intronic miR-301 feedback
regulates its host gene, ska2, in A549 cells by targeting MEOX2 to
affect ERK/CREB pathways. Biochem Biophys Res Commun. 396:978–982.
2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Leventaki V, Rodic V, Tripp SR, Bayerl MG,
Perkins SL, Barnette P, Schiffman JD and Miles RR: TP53 pathway
analysis in paediatric Burkitt lymphoma reveals increased MDM4
expression as the only TP53 pathway abnormality detected in a
subset of cases. Br J Haematol. 158:763–771. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Akao Y, Nakagawa Y, Kitade Y, Kinoshita T
and Naoe T: Downregulation of microRNAs-143 and −145 in B-cell
malignancies. Cancer Sci. 98:1914–1920. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee S, Syed N, Taylor J, Smith P, Griffin
B, Baens M, Bai M, Bourantas K, Stebbing J, Naresh K, et al: DUSP16
isan epigenetically regulated determinant of JNK signalling in
Burkitt's lymphoma. Br J Cancer. 103:265–274. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Motsch N, Pfuhl T, Mrazek J, Barth S and
Grässer FA: Epstein-Barr virus-encoded latent membrane protein 1
(LMP1) induces the expression of the cellular microRNA miR-146a.
RNA Biol. 4:131–137. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hirschhorn JN and Daly MJ: Genome-wide
association studies for common diseases and complex traits. Nat Rev
Genet. 6:95–108. 2005. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Qin S, Ma F and Chen L: Gene regulatory
networks by transcription factors and microRNAs in breast cancer.
Bioinformatics. 31:76–83. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin Y, Zhang Q, Zhang HM, Liu W, Liu CJ,
Li Q and Guo AY: Transcription factor and miRNA co-regulatory
network reveals shared and specific regulators in the development
of B cell and T cell. Sci Rep. 5:152152015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chekmenev DS, Haid C and Kel AE: P-Match:
Transcription factor binding site search by combining patterns and
weight matrices. Nucleic Acids Res. 33:(Web Server issue).
W432–W437. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Piñero J, Queralt-Rosinach N, Bravo À,
Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F and Furlong LI:
DisGeNET: A discovery platform for the dynamical exploration of
human diseases and their genes. Database (Oxford): bav028.
2015.
|
29
|
Rappaport N, Nativ N, Stelzer G, Twik M,
Guan-Golan Y, Stein TI, Bahir I, Belinky F, Morrey CP, Safran M and
Lancet D: MalaCards: An integrated compendium for diseases and
their annotation. Database (Oxford): bat018. 2013. View Article : Google Scholar
|
30
|
Yu W, Clyne M, Khoury MJ and Gwinn M:
Phenopedia and genopedia: Disease-centered and gene-centered views
of the evolving knowledge of human genetic associations.
Bioinformatics. 26:145–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T
and Cui Q: HMDD v2.0: A database for experimentally supported human
microRNA and disease associations. Nucleic Acids Res. 42:(Database
Issue). D1070–D1074. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jiang Q, Wang Y, Hao Y, Juan L, Teng M,
Zhang X, Li M, Wang G and Liu Y: miR2Disease: A manually curated
database for microRNA deregulation in human disease. Nucleic Acids
Res. 37:(Database Issue). D98–D104. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ruepp A, Kowarsch A and Theis F: PhenomiR:
microRNAs in human diseases and biological processes. Methods Mol
Biol. 822:249–260. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang J, Lu M, Qiu C and Cui Q: TransmiR: A
transcription factor-microRNA regulation database. Nucleic Acids
Res. 38:(Database Issue). D119–D122. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wingender E, Chen X, Hehl R, Karas H,
Liebich I, Matys V, Meinhardt T, Prüss M, Reuter I and Schacherer
F: TRANSFAC: An integrated system for gene expression regulation.
Nucleic Acids Res. 28:316–319. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lesurf R, Cotto KC, Wang G, Griffith M,
Kasaian K, Jones SJ, Montgomery SB and Griffith OL: Open Regulatory
Annotation Consortium: ORegAnno 3.0: A community-driven resource
for curated regulatory annotation. Nucleic Acids Res. 44:(D1).
D126–D132. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vlachos IS, Paraskevopoulou MD, Karagkouni
D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL,
Maniou S, Karathanou K, Kalfakakou D, et al: DIANA-TarBase v7.0:
Indexing more than half a million experimentally supported
miRNA:mRNA interactions. Nucleic Acids Res. 43:(Database Issue).
D153–D159. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin
YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, et al: miRTarBase
2016: Updates to the experimentally validated miRNA-target
interactions database. Nucleic Acids Res. 44(D1): D239–D247. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Xiao F, Zuo Z, Cai G, Kang S, Gao X and Li
T: miRecords: An integrated resource for microRNA-target
interactions. Nucleic Acids Res. 37:(Database Issue). D105–D110.
2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fujita PA, Rhead B, Zweig AS, Hinrichs AS,
Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A,
et al: The UCSC Genome Browser database: Update 2011. Nucleic Acids
Res. 39:(Database Issue). D876–D882. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Watanabe A, Maruo S, Ito T, Ito M,
Katsumura KR and Takada K: Epstein-Barr virus-encoded Bcl-2
homologue functions as a survival factor in Wp-restricted Burkitt
lymphoma cell line P3HR-1. J Virol. 84:2893–2901. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Feng M, Huang B, Du Z, Xu X and Chen Z:
DLC-1 as a modulator of proliferation, apoptosis and migration in
Burkitt's lymphoma cells. Mol Biol Rep. 38:1915–1920. 2011.
View Article : Google Scholar : PubMed/NCBI
|