1
|
Center MM, Jemal A and Ward E:
International trends in colorectal cancer incidence rates. Cancer
Epidemiol Biomarkers Prev. 18:1688–1694. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Center MM, Jemal A, Smith RA and Ward E:
Worldwide variations in colorectal cancer. CA Cancer J Clin.
59:366–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Eaden JA, Abrams KR and Mayberry JF: The
risk of colorectal cancer in ulcerative colitis: A meta-analysis.
Gut. 48:526–535. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hagemann T, Balkwill F and Lawrence T:
Inflammation and cancer: A double-edged sword. Cancer Cell.
12:300–301. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wei EK, Giovannucci E, Wu K, Rosner B,
Fuchs CS, Willett WC and Colditz GA: Comparison of risk factors for
colon and rectal cancer. Int J Cancer. 108:433–442. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Tomkovich S, Yang Y, Winglee K, Gauthier
J, Mühlbauer M, Sun X, Mohamadzadeh M, Liu X, Martin P, Wang GP, et
al: Locoregional effects of microbiota in a preclinical model of
colon carcinogenesis. Cancer Res. 77:2620–2632. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tjalsma H, Boleij A, Marchesi JR and
Dutilh BE: A bacterial driver-passenger model for colorectal
cancer: Beyond the usual suspects. Nat Rev Microbiol. 10:575–582.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wong SH, Zhao L, Zhang X, Nakatsu G, Han
J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK, et al: Gavage of fecal
samples from patients with colorectal cancer promotes intestinal
carcinogenesis in germ-free and conventional mice.
Gastroenterology. 153(1621–1633): e62017.
|
9
|
Hold GL and Garrett WS: Gut microbiota.
Microbiota organization-a key to understanding CRC development. Nat
Rev Gastroenterol Hepatol. 12:128–129. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Flemer B, Lynch DB, Brown JM, Jeffery IB,
Ryan FJ, Claesson MJ, O'Riordain M, Shanahan F and O'Toole PW:
Tumour-associated and non-tumour-associated microbiota in
colorectal cancer. Gut. 66:633–643. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zou S, Fang L and Lee MH: Dysbiosis of gut
microbiota in promoting the development of colorectal cancer.
Gastroenterol Rep (Oxf). 6:1–12. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ray D and Kidane D: Gut microbiota
imbalance and base excision repair dynamics in colon cancer. J
Cancer. 7:1421–1430. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Meng C, Bai C, Brown TD, Hood LE and Tian
Q: Human gut microbiota and gastrointestinal cancer. Genomics
Proteomics Bioinformatics. 16:33–49. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Frosali S, Pagliari D, Gambassi G,
Landolfi R, Pandolfi F and Cianci R: How the intricate interaction
among toll-like receptors, microbiota, and intestinal immunity can
influence gastrointestinal pathology. J Immunol Res.
2015:4898212015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fukata M, Hernandez Y, Conduah D, Cohen J,
Chen A, Breglio K, Goo T, Hsu D, Xu R and Abreu MT: Innate immune
signaling by toll-like receptor-4 (TLR4) shapes the inflammatory
microenvironment in colitis-associated tumors. Inflamm Bowel Dis.
15:997–1006. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fukata M, Shang L, Santaolalla R,
Sotolongo J, Pastorini C, España C, Ungaro R, Harpaz N, Cooper HS,
Elson G, et al: Constitutive activation of epithelial TLR4 augments
inflammatory responses to mucosal injury and drives
colitis-associated tumorigenesis. Inflamm Bowel Dis. 17:1464–1473.
2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pimentel-Nunes P, Gonçalves N,
Boal-Carvalho I, Afonso L, Lopes P, Roncon-Albuquerque R Jr, Soares
JB, Cardoso E, Henrique R, Moreira-Dias L, et al: Decreased
Toll-interacting protein and peroxisome proliferator-activated
receptor γ are associated with increased expression of Toll-like
receptors in colon carcinogenesis. J Clin Pathol. 65:302–308. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J,
Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium
nucleatum promotes chemoresistance to colorectal cancer by
modulating autophagy. Cell. 170(548–563): e162017.
|
19
|
Chung YH and Kim D: Enhanced TLR4
expression on colon cancer cells after chemotherapy promotes cell
survival and epithelial-mesenchymal transition through
phosphorylation of GSK3β. Anticancer Res. 36:3383–3394.
2016.PubMed/NCBI
|
20
|
Kuo WT, Lee TC and Yu LC: Eritoran
suppresses colon cancer by altering a functional balance in
toll-like receptors that bind lipopolysaccharide. Cancer Res.
76:4684–4695. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rafa H, Benkhelifa S, AitYounes S, Saoula
H, Belhadef S, Belkhelfa M, Boukercha A, Toumi R, Soufli I, Moralès
O, et al: All-trans retinoic acid modulates TLR4/NF-κB signaling
pathway targeting TNF-α and nitric oxide synthase 2 expression in
colonic mucosa during Ulcerative colitis and colitis associated
cancer. Mediators Inflamm. 2017:73532522017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Louis P, Hold GL and Flint HJ: The gut
microbiota, bacterial metabolites and colorectal cancer. Nat Rev
Microbiol. 12:661–672. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Koh A, De Vadder F, Kovatcheva-Datchary P
and Bäckhed F: From dietary fiber to host physiology: Short-chain
fatty acids as key bacterial metabolites. Cell. 165:1332–1345.
2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cummings JH, Pomare EW, Branch WJ, Naylor
CP and Macfarlane GT: Short chain fatty acids in human large
intestine, portal, hepatic and venous blood. Gut. 28:1221–1227.
1987. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wong JM, de Souza R, Kendall CW, Emam A
and Jenkins DJ: Colonic health: Fermentation and short chain fatty
acids. J Clin Gastroenterol. 40:235–243. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chisolm DA and Weinmann AS: Connections
between metabolism and epigenetics in programming cellular
differentiation. Annu Rev Immunol. 36:221–246. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zheng L, Kelly CJ, Battista KD, Schaefer
R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ and Colgan
SP: Microbial-derived butyrate promotes epithelial barrier function
through IL-10 receptor-dependent repression of claudin-2. J
Immunol. 199:2976–2984. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mollica MP, Raso Mattace G, Cavaliere G,
Trinchese G, De Filippo C, Aceto S, Prisco M, Pirozzi C, Di Guida
F, Lama A, et al: Butyrate regulates liver mitochondrial function,
efficiency, and dynamics in insulin-resistant obese mice. Diabetes.
66:1405–1418. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Astakhova L, Ngara M, Babich O, Prosekov
A, Asyakina L, Dyshlyuk L, Midtvedt T, Zhou X, Ernberg I and
Matskova L: Short chain fatty acids (SCFA) reprogram gene
expression in human malignant epithelial and lymphoid cells. PLoS
One. 11:e01541022016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fellows R, Denizot J, Stellato C, Cuomo A,
Jain P, Stoyanova E, Balázsi S, Hajnády Z, Liebert A, Kazakevych J,
et al: Microbiota derived short chain fatty acids promote histone
crotonylation in the colon through histone deacetylases. Nat
Commun. 9:1052018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Julien O and Wells JA: Caspases and their
substrates. Cell Death Differ. 24:1380–1389. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Inan MS, Rasoulpour RJ, Yin L, Hubbard AK,
Rosenberg DW and Giardina C: The luminal short-chain fatty acid
butyrate modulates NF-kappaB activity in a human colonic epithelial
cell line. Gastroenterology. 118:724–734. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Katzenmaier EM, André S, Kopitz J and
Gabius HJ: Impact of sodium butyrate on the network of
adhesion/growth-regulatory galectins in human colon cancer in
vitro. Anticancer Res. 34:5429–5438. 2014.PubMed/NCBI
|
34
|
Brubaker SW, Bonham KS, Zanoni I and Kagan
JC: Innate immune pattern recognition: A cell biological
perspective. Annu Rev Immunol. 33:257–290. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kitchens RL: Role of CD14 in cellular
recognition of bacterial lipopolysaccharides. Chem Immunol.
74:61–82. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang H, Young DW, Gusovsky F and Chow JC:
Cellular events mediated by lipopolysaccharide-stimulated toll-like
receptor 4. MD-2 is required for activation of mitogen-activated
protein kinases and Elk-1. J Biol Chem. 275:20861–20866. 2000.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Mariani F, Sena P and Roncucci L:
Inflammatory pathways in the early steps of colorectal cancer
development. World J Gastroenterol. 20:9716–9731. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pesic M and Greten FR: Inflammation and
cancer: Tissue regeneration gone awry. Curr Opin Cell Biol.
43:55–61. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sivaprakasam S, Bhutia YD, Ramachandran S
and Ganapathy V: Cell-surface and nuclear receptors in the colon as
targets for bacterial metabolites and its relevance to colon
health. Nutrients. 9:pii: E856. 2017.PubMed/NCBI
|
40
|
Blouin JM, Penot G, Collinet M, Nacfer M,
Forest C, Laurent-Puig P, Coumoul X, Barouki R, Benelli C and
Bortoli S: Butyrate elicits a metabolic switch in human colon
cancer cells by targeting the pyruvate dehydrogenase complex. Int J
Cancer. 128:2591–2601. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bultman SJ: Molecular pathways:
Gene-environment interactions regulating dietary fiber induction of
proliferation and apoptosis via butyrate for cancer prevention.
Clin Cancer Res. 20:799–803. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hague A, Butt AJ and Paraskeva C: The role
of butyrate in human colonic epithelial cells: An energy source or
inducer of differentiation and apoptosis? Proc Nutr Soc.
55:937–943. 1996. View Article : Google Scholar : PubMed/NCBI
|
43
|
Archer SY, Johnson J, Kim HJ, Ma Q, Mou H,
Daesety V, Meng S and Hodin RA: The histone deacetylase inhibitor
butyrate downregulates cyclin B1 gene expression via a
p21/WAF-1-dependent mechanism in human colon cancer cells. Am J
Physiol Gastrointest Liver Physiol. 289:G696–G703. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wilson AJ, Byun DS, Popova N, Murray LB,
L'Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH and
Mariadason JM: Histone deacetylase 3 (HDAC3) and other class I
HDACs regulate colon cell maturation and p21 expression and are
deregulated in human colon cancer. J Biol Chem. 281:13548–13558.
2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang Y, Zhou L, Bao YL, Wu Y, Yu CL,
Huang YX, Sun Y, Zheng LH and Li YX: Butyrate induces cell
apoptosis through activation of JNK MAP kinase pathway in human
colon cancer RKO cells. Chem Biol Interact. 185:174–181. 2010.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Hu S, Liu L, Chang EB, Wang JY and Raufman
JP: Butyrate inhibits pro-proliferative miR-92a by diminishing
c-Myc-induced miR-17-92a cluster transcription in human colon
cancer cells. Mol Cancer. 14:1802015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ortega-Cava CF, Ishihara S, Rumi MA,
Kawashima K, Ishimura N, Kazumori H, Udagawa J, Kadowaki Y and
Kinoshita Y: Strategic compartmentalization of Toll-like receptor 4
in the mouse gut. J Immunol. 170:3977–3985. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Meng D, Zhu W, Shi HN, Lu L, Wijendran V,
Xu W and Walker WA: Toll-like receptor-4 in human and mouse colonic
epithelium is developmentally regulated: A possible role in
necrotizing enterocolitis. Pediatr Res. 77:416–424. 2015.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang EL, Qian ZR, Nakasono M, Tanahashi T,
Yoshimoto K, Bando Y, Kudo E, Shimada M and Sano T: High expression
of Toll-like receptor 4/myeloid differentiation factor 88 signals
correlates with poor prognosis in colorectal cancer. Br J Cancer.
102:908–915. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lu CC, Kuo HC, Wang FS, Jou MH, Lee KC and
Chuang JH: Upregulation of TLRs and IL-6 as a marker in human
colorectal cancer. Int J Mol Sci. 16:159–177. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Paarnio K, Väyrynen S, Klintrup K, Ohtonen
P, Mäkinen MJ, Mäkelä J and Karttunen TJ: Divergent expression of
bacterial wall sensing Toll-like receptors 2 and 4 in colorectal
cancer. World J Gastroenterol. 23:4831–4838. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Rosadini CV and Kagan JC: Early innate
immune responses to bacterial LPS. Curr Opin Immunol. 44:14–19.
2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wu JL, Zou JY, Hu ED, Chen DZ, Chen L, Lu
FB, Xu LM, Zheng MH, Li H, Huang Y, et al: Sodium butyrate
ameliorates S100/FCA-induced autoimmune hepatitis through
regulation of intestinal tight junction and toll-like receptor 4
signaling pathway. Immunol Lett. 190:169–176. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Iraporda C, Errea A, Romanin DE, Cayet D,
Pereyra E, Pignataro O, Sirard JC, Garrote GL, Abraham AG and Rumbo
M: Lactate and short chain fatty acids produced by microbial
fermentation downregulate proinflammatory responses in intestinal
epithelial cells and myeloid cells. Immunobiology. 220:1161–1169.
2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Alva-Murillo N, Medina-Estrada I,
Báez-Magaña M, Ochoa-Zarzosa A and López-Meza JE: The activation of
the TLR2/p38 pathway by sodium butyrate in bovine mammary
epithelial cells is involved in the reduction of Staphylococcus
aureus internalization. Mol Immunol. 68:(2 pt B). 445–455. 2015.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Lin MY, de Zoete MR, van Putten JP and
Strijbis K: Redirection of epithelial immune responses by
short-chain fatty acids through inhibition of histone deacetylases.
Front Immunol. 6:5542015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Larraufie P, Doré J, Lapaque N and
Blottière HM: TLR ligands and butyrate increase Pyy expression
through two distinct but inter-regulated pathways. Cell Microbiol.
19:2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Andoh A, Fujiyama Y, Hata K, Araki Y,
Takaya H, Shimada M and Bamba T: Counter-regulatory effect of
sodium butyrate on tumour necrosis factor-alpha (TNF-alpha)-induced
complement C3 and factor B biosynthesis in human intestinal
epithelial cells. Clin Exp Immunol. 118:23–29. 1999. View Article : Google Scholar : PubMed/NCBI
|
59
|
Hýzd'alová M, Hofmanová J, Pacherník J,
Vaculová A and Kozubík A: The interaction of butyrate with
TNF-alpha during differentiation and apoptosis of colon epithelial
cells: Role of NF-kappaB activation. Cytokine. 44:33–43. 2008.
View Article : Google Scholar : PubMed/NCBI
|