Present and future of cancer immunotherapy: A tumor microenvironmental perspective (Review)
- Authors:
- Yu Yu
- Jiuwei Cui
-
Affiliations: Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: July 26, 2018 https://doi.org/10.3892/ol.2018.9219
- Pages: 4105-4113
-
Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM and Melero I: Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res. 22:1845–1855. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, et al: Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 32:1020–1030. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Qiao J and Fu YX: Immunotherapy and tumor microenvironment. Cancer Lett. 370:85–90. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beatty GL and Gladney WL: Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 21:687–692. 2015. View Article : Google Scholar : PubMed/NCBI | |
Klemm F and Joyce JA: Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 25:198–213. 2015. View Article : Google Scholar : PubMed/NCBI | |
Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM and DeClerck YA: Tumor microenvironment complexity: Emerging roles in cancer therapy. Cancer Res. 72:2473–2480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Junttila MR and de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Becker JC, Andersen MH, Schrama D and Straten Thor P: Immune-suppressive properties of the tumor microenvironment. Cancer Immunol Immunother. 62:1137–1148. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI | |
Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Walls J, Sinclair L and Finlay D: Nutrient sensing, signal transduction and immune responses. Semin Immunol. 28:396–407. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC and Puccetti P: T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9:1069–1077. 2002. View Article : Google Scholar : PubMed/NCBI | |
Munn DH and Mellor AL: Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34:137–143. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Li Y and Zhu B: T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6:e17922015. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fearon DT: The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res. 2:187–193. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E and Cheng JD: FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer. 11:2452011. View Article : Google Scholar : PubMed/NCBI | |
Shimoda M, Mellody KT and Orimo A: Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol. 21:19–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rucki AA and Zheng L: Pancreatic cancer stroma: Understanding biology leads to new therapeutic strategies. World J Gastroenterol. 20:2237–2246. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA and Fearon DT: Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 330:827–830. 2010. View Article : Google Scholar : PubMed/NCBI | |
Motz GT and Coukos G: The parallel lives of angiogenesis and immunosuppression: Cancer and other tales. Nat Rev Immunol. 11:702–711. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rofstad EK, Galappathi K and Mathiesen BS: Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia. 16:586–594. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shweiki D, Itin A, Soffer D and Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 359:843–845. 1992. View Article : Google Scholar : PubMed/NCBI | |
Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, et al: Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72:2746–2756. 2012. View Article : Google Scholar : PubMed/NCBI | |
Balamurugan K: HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 138:1058–1066. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC, Teng SC and Wu KJ: Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell. 43:811–822. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pottier C, Wheatherspoon A, Roncarati P, Longuespée R, Herfs M, Duray A, Delvenne P and Quatresooz P: The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther. 15:943–954. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI | |
Apte M, Pirola RC and Wilson JS: Pancreatic stellate cell: Physiologic role, role in fibrosis and cancer. Curr Opin Gastroenterol. 31:416–423. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feig C, Gopinathan A, Neesse A, Chan DS, Cook N and Tuveson DA: The pancreas cancer microenvironment. Clin Cancer Res. 18:4266–4276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kashiwagi S, Izumi Y, Gohongi T, Demou ZN, Xu L, Huang PL, Buerk DG, Munn LL, Jain RK and Fukumura D: NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest. 115:1816–1827. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baldewijns MM, Thijssen VL, Van den Eynden GG, Van Laere SJ, Bluekens AM, Roskams T, van Poppel H, De Bruine AP, Griffioen AW and Vermeulen PB: High-grade clear cell renal cell carcinoma has a higher angiogenic activity than low-grade renal cell carcinoma based on histomorphological quantification and qRT-PCR mRNA expression profile. Br J Cancer. 96:1888–1895. 2007. View Article : Google Scholar : PubMed/NCBI | |
Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E and Jain RK: Pathology: Cancer cells compress intratumour vessels. Nature. 427:6952004. View Article : Google Scholar : PubMed/NCBI | |
Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, et al: An immune atlas of clear cell renal cell carcinoma. Cell. 169(736–749): e182017. | |
Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, et al: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell. 169(750–765): e172017. | |
Mielgo A and Schmid MC: Impact of tumour associated macrophages in pancreatic cancer. BMB Rep. 46:131–138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, et al: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 331:1612–1616. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pages F, et al: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li F, Jiang F, Lv X, Zhang R, Lu A and Zhang G: A Mini-review for cancer immunotherapy: Molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int J Mol Sci. 17:pii: E1151. 2016. | |
Ledford H: Cocktails for cancer with a measure of immunotherapy. Nature. 532:162–164. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Page DB, Bourla AB, Daniyan A, Naidoo J, Smith E, Smith M, Friedman C, Khalil DN, Funt S, Shoushtari AN, et al: Tumor immunology and cancer immunotherapy: Summary of the 2014 SITC primer. J Immunother Cancer. 3:252015. View Article : Google Scholar | |
Gunturi A and McDermott DF: Nivolumab for the treatment of cancer. Expert Opin Investig Drugs. 24:253–260. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teng MW, Ngiow SF, Ribas A and Smyth MJ: Classifying cancers based on t-cell infiltration and pd-l1. Cancer Res. 75:2139–2145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Smyth MJ, Ngiow SF, Ribas A and Teng MW: Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 13:143–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kottke T, Evgin L, Shim KG, Rommelfanger D, Boisgerault N, Zaidi S, Diaz RM, Thompson J, Ilett E, Coffey M, et al: Subversion of NK-cell and TNFα immune surveillance drives tumor recurrence. Cancer Immunol Res. 5:1029–1045. 2017. View Article : Google Scholar : PubMed/NCBI | |
U.S. Food and drug administration: Treatment approved for Any Solid tumor with biomarker. Onco Times. 39:52–53. 2017. View Article : Google Scholar | |
Baumeister SH, Freeman GJ, Dranoff G and Sharpe AH: Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 34:539–573. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, et al: Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 13:473–486. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK, Agarwala SS, et al: Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17:1558–1568. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and Allison JP: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 170(1120–1133): e172017. | |
Shayan G, Srivastava R, Li J, Schmitt N, Kane LP and Ferris RL: Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology. 6:e12617792016. View Article : Google Scholar : PubMed/NCBI | |
Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, et al: Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 7:105012016. View Article : Google Scholar : PubMed/NCBI | |
Foy SP, Sennino B, dela Cruz T, Cote JJ, Gordon EJ, Kemp F, Xavier V, Franzusoff A, Rountree RB and Mandl SJ: Poxvirus-based active immunotherapy with PD-1 and LAG-3 dual immune checkpoint inhibition overcomes compensatory immune regulation, Yielding complete tumor regression in mice. PLoS One. 11:e01500842016. View Article : Google Scholar : PubMed/NCBI | |
Taylor NA, Vick SC, Iglesia MD, Brickey WJ, Midkiff BR, McKinnon KP, Reisdorf S, Anders CK, Carey LA, Parker JS, et al: Treg depletion potentiates checkpoint inhibition in claudin-low breast cancer. J Clin Invest. 127:3472–3483. 2017. View Article : Google Scholar : PubMed/NCBI | |
Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, Gough MJ, Urba WJ and Fox BA: Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res. 23:6165–6177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shrimali RK, Ahmad S, Verma V, Zeng P, Ananth S, Gaur P, Gittelman RM, Yusko E, Sanders C, Robins H, et al: Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res. 5:755–766. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yue EW, Sparks R, Polam P, Modi D, Douty B, Wayland B, Glass B, Takvorian A, Glenn J, Zhu W, et al: INCB24360 (Epacadostat), a highly potent and selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett. 8:486–491. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ and Wainwright DA: Molecular pathways: Targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 21:5427–5433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beatty GL, O'Dwyer PJ, Clark J, Shi JG, Bowman KJ, Scherle PA, Newton RC, Schaub R, Maleski J, Leopold L, et al: First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res. 23:3269–3276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Soliman HH, Minton SE, Han HS, Ismail-Khan R, Neuger A, Khambati F, Noyes D, Lush R, Chiappori AA, Roberts JD, et al: A phase I study of indoximod in patients with advanced malignancies. Oncotarget. 7:22928–22938. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gangadhar TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Luke JJ, Balmanoukian AS, Kaufman DR, Zhao Y, Maleski J, et al: Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother Cancer. 3 Suppl 2:O72015. View Article : Google Scholar | |
Zhu Y, Zang Y, Zhao F, Li Z, Zhang J, Fang L, Li M, Xing L, Xu Z and Yu J: Inhibition of HIF-1α by PX-478 suppresses tumor growth of esophageal squamous cell cancer in vitro and in vivo. Am J Cancer Res. 7:1198–1212. 2017.PubMed/NCBI | |
Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A, Melillo G, Turkbey B, Steinberg SM, Choyke P, Doroshow JH, et al: Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors. Cancer Chemother Pharmacol. 73:343–348. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Sheng S, Li R, Sun X, Liu J and Huang G: Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep. 33:875–884. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schelman WR, Mohammed TA, Traynor AM, Kolesar JM, Marnocha RM, Eickhoff J, Keppen M, Alberti DB, Wilding G, Takebe N and Liu G: A phase I study of AT-101 with cisplatin and etoposide in patients with advanced solid tumors with an expanded cohort in extensive-stage small cell lung cancer. Invest New Drugs. 32:295–302. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kershaw S, Cummings J, Morris K, Tugwood J and Dive C: Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer. 15:3872015. View Article : Google Scholar : PubMed/NCBI | |
Tarallo V and De Falco S: The vascular endothelial growth factors and receptors family: Up to now the only target for anti-angiogenesis therapy. Int J Biochem Cell Bio. 64:185–189. 2015. View Article : Google Scholar | |
Bueno MJ, Mouron S and Quintela-Fandino M: Personalising and targeting antiangiogenic resistance: A complex and multifactorial approach. Br J Cancer. 116:1119–1125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Goldstein A, Wang H, Lo Ching H, Kim Sun I, Welte T, Sheng K, Dobrolecki LE, Zhang X, Putluri N, et al: Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 544:250–254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Melichar B, Bracarda S, Matveev V, Alekseev B, Ivanov S, Zyryanov A, Janciauskiene R, Fernebro E, Mulders P, Osborne S, et al: A multinational phase II trial of bevacizumab with low-dose interferon-α2a as first-line treatment of metastatic renal cell carcinoma: BEVLiN. Ann Oncol. 24:2396–2402. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG, Hariharan S and Escudier B: Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 32:752–759. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, Divgi CR, Hanson LH, Mitchell P, Gansen DN, et al: A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 9:1639–1647. 2003.PubMed/NCBI | |
Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jäger D, Renner C, Tanswell P, Kunz U, Amelsberg A, Kuthan H and Stehle G: Stromal antigen targeting by a humanised monoclonal antibody: An early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 26:44–48. 2003.PubMed/NCBI | |
Arenas-Ramirez N, Woytschak J and Boyman O: Interleukin-2: Biology, design and application. Trends Immunol. 36:763–777. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, et al: Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 21:1611–1620. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP and Rosenberg SA: Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 210:1125–1135. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, Antzis M, Cotner CE, Johnson LA, Durham AC, et al: Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2:154–166. 2014. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Zitvogel L and Kroemer G: Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol Res. 4:895–902. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teng F, Kong L, Meng X, Yang J and Yu J: Radiotherapy combined with immune checkpoint blockade immunotherapy: Achievements and challenges. Cancer Lett. 365:23–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kalbasi A, June CH, Haas N and Vapiwala N: Radiation and immunotherapy: A synergistic combination. J Clin Invest. 123:2756–2763. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park B, Yee C and Lee KM: The effect of radiation on the immune response to cancers. Int J Mol Sci. 15:927–943. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dalgleish AG: Rationale for combining immunotherapy with chemotherapy. Immunotherapy. 7:309–316. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wargo JA, Reuben A, Cooper ZA, Oh KS and Sullivan RJ: Immune effects of chemotherapy, radiation, and targeted therapy and opportunities for combination with immunotherapy. Semin Oncol. 42:601–616. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sharabi AB, Lim M, DeWeese TL and Drake CG: Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 16:e498–e509. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shahabi V, Postow MA, Tuck D and Wolchok JD: Immune-priming of the tumor microenvironment by radiotherapy: Rationale for combination with immunotherapy to improve anticancer efficacy. Am J Clin Oncol. 38:90–97. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hughes PE, Caenepeel S and Wu LC: Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol. 37:462–476. 2016. View Article : Google Scholar : PubMed/NCBI |