1
|
Grimwade D, Walker H, Oliver F, Wheatley
K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A and
Goldstone A: The importance of diagnostic cytogenetics on outcome
in AML: Analysis of 1,612 patients entered into the MRC AML 10
trial. The Medical Research Council Adult And Children's Leukaemia
Working Parties. Blood. 92:2322–2333. 1998.PubMed/NCBI
|
2
|
Byrd JC, Mrózek K, Dodge RK, Carroll AJ,
Edwards CG, Arthur DC, Pettenati MJ, Patil SR, Rao KW, Watson MS,
et al: Pretreatment cytogenetic abnormalities are predictive of
induction success, cumulative incidence of relapse, and overall
survival in adult patients with de novo acute myeloid leukemia:
Results from Cancer and Leukemia Group B (CALGB 8461). Blood.
100:4325–4336. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Grimwade D, Hills RK, Moorman AV, Walker
H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ and Burnett
AK: National Cancer Research Institute Adult Leukaemia Working
Group: Refinement of cytogenetic classification in acute myeloid
leukemia: Determination of prognostic significance of rare
recurring chromosomal abnormalities among 5876 younger adult
patients treated in the United Kingdom Medical Research Council
trials. Blood. 116:354–365. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jourdan E, Boissel N, Chevret S, Delabesse
E, Renneville A, Cornillet P, Blanchet O, Cayuela JM, Recher C,
Raffoux E, et al: Prospective evaluation of gene mutations and
minimal residual disease in patients with core binding factor acute
myeloid leukemia. Blood. 121:2213–2223. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Inaba H, Coustan-Smith E, Cao X, Pounds
SB, Shurtleff SA, Wang KY, Raimondi SC, Onciu M, Jacobsen J,
Ribeiro RC, et al: Comparative analysis of different approaches to
measure treatment response in acute myeloid leukemia. J Clin Oncol.
30:3625–32. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Coustan-Smith E and Campana D: Should
evaluation for minimal residual disease be routine in acute myeloid
leukemia? Curr Opin Hematol. 20:86–92. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
van der Velden VH, Hochhaus A, Cazzaniga
G, Szczepanski T, Gabert J and van Dongen JJ: Detection of minimal
residual disease in hematologic malignancies by real-time
quantitative PCR: Principles, approaches, and laboratory aspects.
Leukemia. 17:1013–1034. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wheatley K, Burnett AK, Goldstone AH, Gray
RG, Hann IM, Harrison CJ, Rees JK, Stevens RF and Walker H: A
simple, robust, validated and highly predictive index for the
determination of risk-directed therapy in acute myeloid leukaemia
derived from the MRC AML 10 trial. United Kingdom medical research
council's adult and childhood leukaemia working parties british. J
Haematol. 107:69–79. 1999. View Article : Google Scholar
|
9
|
Buccisano F, Maurillo L, Gattei V, Del
Poeta G, Del Principe MI, Cox MC, Panetta P, Consalvo MI, Mazzone
C, Neri B, et al: The kinetics of reduction of minimal residual
disease impacts on duration of response and survival of patients
with acute myeloid leukemia. Leukemia. 20:1783–1789. 2006.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Maurillo L, Buccisano F, Del Principe MI,
Del Poeta G, Spagnoli A, Panetta P, Ammatuna E, Neri B, Ottaviani
L, Sarlo C, et al: Toward optimization of postremission therapy for
residual disease-positive patients with acute myeloid leukemia. J
Clin Oncol. 26:4944–4951. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Buccisano F, Maurillo L, Del Principe MI,
Del Poeta G, Sconocchia G, Lo-Coco F, Arcese W, Amadori S and
Venditti A: Prognostic and therapeutic implications of minimal
residual disease detection in acute myeloid leukemia. Blood.
119:332–341. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Roix JJ, McQueen PG, Munson PJ, Parada LA
and Misteli T: Spatial proximity of translocation-prone gene loci
in human lymphomas. Nat Genet. 34:287–291. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Holley WR, Mian IS, Park SJ, Rydberg B and
Chatterjee A: A model for interphase chromosomes and evaluation of
radiation-induced aberrations. Radiat Res. 158:568–80. 2002.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Martin LD, Harizanova J, Righolt CH, Zhu
G, Mai S, Belch AR and Pilarski LM: Differential nuclear
organization of translocation-prone genes in nonmalignant B cells
from patients with t (14; 16) as compared with t (4; 14) or t (11;
14) myeloma. Genes Chromosomes Cancer. 52:523–537. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Parada LA and Misteli T: Chromosome
positioning in the interphase nucleus. Trends Cell Biol.
12:425–432. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tian X, Wang Y, Zhao F, Liu J, Yin J, Chen
D, Ma W and Ke X: A new classification of interphase nuclei based
on spatial organizations of chromosome 8 and 21 for t(8;21)
(q22;q22) acute myeloid leukemia by three-dimensional fluorescence
in situ hybridization. Leuk Res. 39:1414–1420. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tobal K, Newton J, Macheta M, Chang J,
Morgenstern G, Evans PA, Morgan G, Lucas GS and Yin Liu JA:
Molecular quantitation of minimal residual disease in acute myeloid
leukemia with t(8;21) can identify patients in durable remission
and predict clinical relapse. Blood. 95:815–819. 2000.PubMed/NCBI
|
18
|
Corbacioglu A, Scholl C, Schlenk RF, Eiwen
K, Du J, Bullinger L, Fröhling S, Reimer P, Rummel M, Derigs HG, et
al: Prognostic impact of minimal residual disease in
CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol.
28:3724–3729. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Leroy H, de Botton S, Grardel-Duflos N,
Darre S, Leleu X, Roumier C, Morschhauser F, Lai JL, Bauters F,
Fenaux P and Preudhomme C: Prognostic value of real-time
quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia.
19:367–372. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stentoft J, Hokland P, Ostergaard M, Hasle
H and Nyvold CG: Minimal residual core binding factor AMLs by real
time quantitative PCR - Initial response to chemotherapy predicts
event free survival and close monitoring of peripheral blood
unravels the kinetics of relapse. Leuk Res. 30:389–395. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhao F, Yang X, Chen D, Ma W, Zheng J and
Zhang X: A method for simultaneously delineating multiple targets
in 3D-FISH using limited channels, lasers, and fluorochromes. Eur
Biophys J. 43:53–58. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Parada LA, Sotiriou S and Misteli T:
Spatial genome organization. Exp Cell Res. 296:64–70. 2004.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Branco MR and Pombo A: Intermingling of
chromosome territories in interphase suggests role in
translocations and transcription-dependent associations. PLoS Biol.
4:e1382006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Solovei I, Cavallo A, Schermelleh L,
Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S and Cremer T:
Spatial preservation of nuclear chromatin architecture during
three-dimensional fluorescence in situ hybridization (3D-FISH). Exp
Cell Res. 276:10–23. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Manvelyan M, Hunstig F, Mrasek K, Bhatt S,
Pellestor F, Weise A and Liehr T: Position of chromosomes 18, 19,
21 and 22 in 3D-preserved interphase nuclei of human and gorilla
and white hand gibbon. Mol Cytogenet. 1:92008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu S, Li Q, Pang W, Bo L, Qin S, Liu X,
Teng Q, Qian L and Wang J: A new complex variant t(4;15;17) in
acute promyelocytic leukemia: Fluorescence in situ hybridization
confirmation and literature review. Cancer Genet Cytogenet.
130:33–37. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hiorns LR, Min T, Swansbury GJ, Zelent A,
Dyer MJS and Catovsky D: Interstitial insertion of retinoic acid
receptor-alpha gene in acute promyelocytic leukemia with normal
chromosomes 15 and 17. Blood. 83:2946–29451. 1994.PubMed/NCBI
|
29
|
Brockman SR, Paternoster SF, Ketterling RP
and Dewald GW: New highly sensitive fluorescence in situ
hybridization method to detect PML/RARA fusion in acute
promyelocytic leukemia. Cancer Genet Cytogenet. 145:144–151. 2003.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Tian X, Wang Y, Chen D, Ke X and Ma W:
Significance of spatial organization of chromosomes in the
progression of acute myeloid leukemia. Chin J Cancer. 36:402017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Fritz AJ, Stojkovic B, Ding H, Xu J,
Bhattacharya S, Gaile D and Berezney R: Wide-scale alterations in
interchromosomal organization in breast cancer cells: Defining a
network of interacting chromosomes. Hum Mol Genet. 23:5133–5146.
2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Satake N, Maseki N, Kozu T, Sakashita A,
Kobayashi H, Sakurai M, Ohki M and Kaneko Y: Disappearance of
AML1-MTG8(ETO) fusion transcript in acute myloid-leukemia patients
with t(8–21) in long-term remission. Br J Haematol. 91:892–898.
1995. View Article : Google Scholar : PubMed/NCBI
|