Transforming growth factor‑β signaling in head and neck squamous cell carcinoma: Insights into cellular responses (Review)
- Authors:
- Xin Pang
- Ya‑Ling Tang
- Xin‑Hua Liang
-
Affiliations: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: August 17, 2018 https://doi.org/10.3892/ol.2018.9319
- Pages: 4799-4806
This article is mentioned in:
Abstract
Meulmeester E and Ten Dijke P: The dynamic roles of TGF-β in cancer. J Pathol. 223:205–218. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pickup M, Novitskiy S and Moses HL: The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 13:788–799. 2013. View Article : Google Scholar : PubMed/NCBI | |
Drabsch Y and ten Dijke P: TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31:553–568. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wakefield LM and Hill CS: Beyond TGFβ: Roles of other TGFβ superfamily members in cancer. Nat Rev Cancer. 13:328–341. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cantelli G, Crosas-Molist E, Georgouli M and Sanz-Moreno V: TGFβ-induced transcription in cancer. Semin Cancer Biol. 42:60–69. 2017. View Article : Google Scholar : PubMed/NCBI | |
López-Casillas F, Wrana JL and Massagué J: Betaglycan presents ligand to the TGF beta signaling receptor. Cell. 73:1435–1444. 1993. View Article : Google Scholar : PubMed/NCBI | |
Gatza CE, Sun YO and Blobe GC: Roles for the type III TGF-β receptor in human cancer. Cell Signal. 22:1163–1174. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schmierer B and Hill CS: Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol Cell Biol. 25:9845–9858. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K and ten Dijke P: TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16:5353–5362. 1997. View Article : Google Scholar : PubMed/NCBI | |
Koinuma D, Tsutsumi S, Kamimura N, Imamura T, Aburatani H and Miyazono K: Promoter-wide analysis of Smad4 binding sites in human epithelial cells. Cancer Sci. 100:2133–2142. 2009. View Article : Google Scholar : PubMed/NCBI | |
Itoh S and ten Dijke P: Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol. 19:176–184. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH and Wrana JL: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 6:1365–1375. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ohkawara B, Shirakabe K, Hyodo-Miura J, Matsuo R, Ueno N, Matsumoto K and Shibuya H: Role of the TAK1-NLK-STAT3 pathway in TGF-beta-mediated mesoderm induction. Genes Dev. 18:381–386. 2004. View Article : Google Scholar : PubMed/NCBI | |
Massagué J and Gomis RR: The logic of TGFβ signaling. FEBS Lett. 580:2811–2820. 2006. View Article : Google Scholar : PubMed/NCBI | |
Malkoski SP and Wang XJ: Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett. 586:1984–1992. 2012. View Article : Google Scholar : PubMed/NCBI | |
Krstevska V: Evolution of treatment and high-risk features in resectable locally advanced Head and Neck squamous cell carcinoma with special reference to extracapsular extension of nodal disease. J BUON. 20:943–953. 2015.PubMed/NCBI | |
Moutsopoulos NM, Wen J and Wahl SM: TGF-beta and tumors-an ill-fated alliance. Curr Opin Immunol. 20:234–240. 2008. View Article : Google Scholar : PubMed/NCBI | |
Parkin DM, Bray F, Ferlay J and Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005. View Article : Google Scholar : PubMed/NCBI | |
Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I, Seeff LC, et al: Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 116:544–573. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grsic K, Opacic IL, Sitic S, Milkovic PM, Suton P and Sarcevic B: The prognostic significance of estrogen receptor β in head and neck squamous cell carcinoma. Oncol Lett. 12:3861–3865. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bae WJ, Lee SH, Rho YS, Koo BS and Lim YC: Transforming growth factor β1 enhances stemness of head and neck squamous cell carcinoma cells through activation of Wnt signaling. Oncol Lett. 12:5315–5320. 2016. View Article : Google Scholar : PubMed/NCBI | |
Honjo Y, Bian Y, Kawakam K, Molinolo A, Longenecker G, Boppana R, Larsson J, Karlsson S, Gutkind JS, Puri RK and Kulkarni AB: TGF-β receptor I conditional knockout mice develop spontaneous squamous cell carcinoma. Cell Cycle. 6:1360–1366. 2007. View Article : Google Scholar : PubMed/NCBI | |
Connolly EC and Akhurst RJ: The complexities of TGF-β action during mammary and squamous cell carcinogenesis. Curr Pharm Biotechnol. 12:2138–2149. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pring M, Prime S, Parkinson EK and Paterson I: Dysregulated TGF-beta1-induced Smad signalling occurs as a result of defects in multiple components of the TGF-beta signalling pathway in human head and neck carcinoma cell lines. Int J Oncol. 28:1279–1285. 2006.PubMed/NCBI | |
Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et al: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 333:1154–1157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, et al: Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest. 119:3408–3419. 2009.PubMed/NCBI | |
Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M and Wang XJ: Overexpression of transforming growth factor β1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res. 64:4405–4410. 2004. View Article : Google Scholar : PubMed/NCBI | |
Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC and Albertson DG: Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene. 24:4232–4242. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D, Li AG, Tang CF, Siddiqui Y, Nord J, et al: Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 20:1331–1342. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, Waes CV and Kulkarni AB: Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene. 31:3322–3332. 2012. View Article : Google Scholar : PubMed/NCBI | |
White RA, Malkoski SP and Wang XJ: TGFβ signaling in head and neck squamous cell carcinoma. Oncogene. 29:5437–5446. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alexandrow MG and Moses H: Transforming growth factor b and cell cycle regulation. Cancer Res. 55:1452–1457. 1995.PubMed/NCBI | |
Kim T, Cui R, Jeon YJ, Fadda P, Alder H and Croce CM: MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget. 6:18780–18789. 2015.PubMed/NCBI | |
Chen CR, Kang Y, Siegel PM and Massagué J: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell. 110:19–32. 2002. View Article : Google Scholar : PubMed/NCBI | |
Massague J: TGFbeta in Cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pardali K and Moustakas A: Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 1775:21–62. 2007.PubMed/NCBI | |
Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH and Landström M: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 10:1199–1207. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamashita M, Fatyol K, Jin C, Wang X, Liu Z and Zhang YE: TRAF6 mediates smad-independent activation of JNK and p38 by TGF-beta. Mol Cell. 31:918–924. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Ekman M, Thakur N, Bu S, Davoodpour P, Grimsby S, Tagami S, Heldin CH and Landström M: TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner. Cell Cycle. 5:2787–2795. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jang CW, Chen CH, Chen CC, Chen JY, Su YH and Chen RH: TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol. 4:51–58. 2001. View Article : Google Scholar | |
Korchynskyi O and ten Dijke P: Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 277:4883–4891. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kang Y, Chen CR and Massagué J: A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 11:915–926. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM and Kulkarni AB: Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res. 69:5918–5926. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Ye D, Guo W, Yu W, He Y, Hu J, Wang Y, Zhang L, Liao Y, Song H, et al: G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget. 6:6887–6901. 2015.PubMed/NCBI | |
Smith A, Teknos TN and Pan Q: Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 49:287–292. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Diamond ME, Ottaviano AJ, Joseph MJ, Ananthanarayan V and Munshi HG: Transforming growth factor-beta 1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression. Mol Cancer Res. 6:10–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qiao B, Johnson NW and Gao J: Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and −9 expressions. Int J Oncol. 37:663–668. 2010.PubMed/NCBI | |
Yu C, Liu Y, Huang D, Dai Y, Cai G, Sun J, Xu T, Tian Y and Zhang X: TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck. Oncol Rep. 25:15812011.PubMed/NCBI | |
Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W, Kulesz-Martin M, Bottinger E and Wang XJ: Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest. 118:2722–2732. 2008.PubMed/NCBI | |
Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N and Pavasant P: TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun. 371:713–718. 2008. View Article : Google Scholar : PubMed/NCBI | |
Joseph MJ, Dangi-Garimella S, Shields MA, Diamond ME, Sun L, Koblinski JE and Munshi HG: Slug is a downstream mediator of transforming growth factor-beta1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells. J Cell Biochem. 108:726–736. 2009. View Article : Google Scholar : PubMed/NCBI | |
Richter P, Umbreit C, Franz M and Berndt A, Grimm S, Uecker A, Böhmer FD, Kosmehl H and Berndt A: EGF/TGFβ1 co-stimulation of oral squamous cell carcinoma cells causes an epithelial-mesenchymal transition cell phenotype expressing laminin 332. J Oral Pathol Med. 40:46–54. 2011. View Article : Google Scholar : PubMed/NCBI | |
Korc M: Smad4: Gatekeeper gene in head and neck squamous cell carcinoma. J Clin Invest. 119:3208–3211. 2009.PubMed/NCBI | |
Saha D, Datta PK and Beauchamp RD: Oncogenic ras represses transforming growth factor-beta/Smad signaling by degrading tumor suppressor Smad4. J Biol Chem. 276:29531–29537. 2001. View Article : Google Scholar : PubMed/NCBI | |
Iglesias M, Frontelo P, Gamallo C and Quintanilla M: Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signalling pathway associated with progression to undifferentiated carcinomas. Oncogene. 19:4134–4145. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hannigan A, Smith P, Kalna G, Lo Nigro C, Orange C, O'Brien DI, Shah R, Syed N, Spender LC, Herrera B, et al: Epigenetic downregulation of human disabled homolog 2 switches TGF-beta from a tumor suppressor to a tumor promoter. J Cli Invest. 120:2842–2857. 2010. View Article : Google Scholar | |
Wang D, Song H, Evans JA, Lang JC, Schuller DE and Weghorst CM: Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis. 18:2285–2290. 1997. View Article : Google Scholar : PubMed/NCBI | |
Freudlsperger C, Bian Y, Contag Wise S, Burnett J, Coupar J, Yang X, Chen Z and Van Waes C: TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene. 32:1549–1559. 2013. View Article : Google Scholar : PubMed/NCBI | |
Burnet FM: Immunological aspects of malignant disease. Lancet. 1:1171–1174. 1967. View Article : Google Scholar : PubMed/NCBI | |
Yang L: TGFbeta and cancer metastasis: An inflammation link. Cancer Metastasis Rev. 29:263–271. 2010. View Article : Google Scholar : PubMed/NCBI | |
Steinman RM and Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 137:1142–1162. 1973. View Article : Google Scholar : PubMed/NCBI | |
Banchereau J and Steinman RM: Dendritic cells and the control of immunity. Nature. 392:245–252. 1998. View Article : Google Scholar : PubMed/NCBI | |
Duray A, Demoulin S, Hubert P, Delvenne P and Saussez S: Immune suppression in head and neck cancers: A review. Clin Dev Immunol. 2010:7016572010. View Article : Google Scholar : PubMed/NCBI | |
Wrzesinski SH, Wan YY and Flavell RA: Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res. 13:5262–5270. 2007. View Article : Google Scholar : PubMed/NCBI | |
Khazaie K and von Boehmer H: The impact of CD4+CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol. 16:124–136. 2006. View Article : Google Scholar : PubMed/NCBI | |
Curry JM, Sprandio J, Cognetti D, Luginbuhl A, Bar-ad V, Pribitkin E and Tuluc M: Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol. 41:217–234. 2014. View Article : Google Scholar : PubMed/NCBI | |
El-Rouby DH: Association of macrophages with angiogenesis in oral verrucous and squamous cell carcinomas. J Oral Pathol Med. 39:559–564. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu SY, Chang LC, Pan LF, Hung YJ, Lee CH and Shieh YS: Clinicopathologic significance of tumor cell-lined vessel and microenvironment in oral squamous cell carcinoma. Oral Oncol. 44:277–285. 2008. View Article : Google Scholar : PubMed/NCBI | |
Marcus B, Arenberg D, Lee J, Kleer C, Chepeha DB, Schmalbach CE, Islam M, Paul S, Pan Q, Hanash S, et al: Prognostic factors in oral cavity and oropharyngeal squamous cell carcinoma. Cancer. 101:2779–2787. 2004. View Article : Google Scholar : PubMed/NCBI | |
Flavell R, Sanjabi S, Wrzesinski S and Licona-Limón P: The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 10:554–567. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akira S and Takeda K: Toll-like receptor signalling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seya T, Akazawa T, Uehori J, Matsumoto M, Azuma I and Toyoshima K: Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer. Anticancer Res. 23:4369–4376. 2003.PubMed/NCBI | |
Standiford TJ, Kuick R, Bhan U, Chen J, Newstead M and Keshamouni VG: TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene. 30:2475–2484. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schantz SP, Shillitoe EJ, Brown B and Campbell B: Natural killer cell activity and head and neck cancer: A clinical assessment. J Natl Cancer Inst. 77:869–875. 1986.PubMed/NCBI | |
Schantz SP and Goepfert H: Multimodality therapy and distant metastases. The impact of natural killer cell activity. Arch Otolaryngol Head Neck Surg. 113:1207–1213. 1987. View Article : Google Scholar : PubMed/NCBI | |
Wahl SM, Wen J and Moutsopoulos NM: The kiss of death: Interrupted by NK-cell close encounters of another kind. Trends Immunol. 27:161–164. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zwirner NW, Fuertes MB, Girart MV, Domaica CI and Rossi LE: Cytokine-driven regulation of NK cell functions in tumor immunity: Role of the MICA-NKG2D system. Cytokine Growth Factor Rev. 18:159–170. 2007. View Article : Google Scholar : PubMed/NCBI | |
Klöss S, Chambron N, Gardlowski T, Weil S, Koch J, Esser R, Pogge von Strandmann E, Morgan MA, Arseniev L, Seitz O and Köhl U: Cetuximab reconstitutes pro-inflammatory cytokine secretions and tumor-infiltrating capabilities of sMICA-inhibited NK cells in HNSCC tumor spheroids. Front Immunol. 6:5432015. View Article : Google Scholar : PubMed/NCBI | |
Ghiringhelli F, Menard C, Martin F and Zitvogel L: The role of regulatory T cells in the control of natural killer cells: Relevance during tumor progression. Immunol Rev. 214:229–238. 2006. View Article : Google Scholar : PubMed/NCBI | |
Buessow SC, Paul RD and Lopez DM: Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice. J Natl Cancer Inst. 73:249–255. 1984.PubMed/NCBI | |
Chen WC, Lai CH, Chuang HC, Lin PY and Chen MF: Inflammation-induced myeloid-derived suppressor cells associated with squamous cell carcinoma of the head and neck. Head Neck. 39:347–355. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mao L, Deng WW, Yu GT, Bu LL, Liu JF, Ma SR, Wu L, Kulkarni AB, Zhang WF and Sun ZJ: Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer. Int J Cancer. 140:1173–1185. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pyzer AR, Cole L, Rosenblatt J and Avigan DE: Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer. 139:1915–1926. 2016. View Article : Google Scholar : PubMed/NCBI | |
Russell SM, Lechner MG, Gong L, Megiel C, Liebertz DJ, Masood R, Correa AJ, Han J, Puri RK, Sinha UK, et al: USC-HN2, a new model cell line for recurrent oral cavity squamous cell carcinoma with immunosuppressive characteristics. Oral Oncol. 47:810–817. 2011. View Article : Google Scholar : PubMed/NCBI | |
Filipazzi P, Huber V and Rivoltini L: Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother. 61:255–263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tu E, Chia PZ and Chen W: TGFβ in T cell biology and tumor immunity: Angel or devil? Cytokine Growth Factor Rev. 25:423–435. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wolfraim LA, Walz TM, James Z, Fernandez T and Letterio JJ: p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness. J Immunol. 173:3093–3102. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 9:194–202. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN and Whiteside TL: Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer. 92:913–920. 2005. View Article : Google Scholar : PubMed/NCBI | |
Boucek J, Mrkvan T, Chovanec M, Kuchar M, Betka J, Boucek V, Hladikova M, Betka J, Eckschlager T and Rihova B: Regulatory T cells and their prognostic value for patients with squamous cell carcinoma of the head and neck. J Cell Mol Med. 14:426–433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT and Whiteside TL: A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res. 13:4345–4354. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bergmann C, Strauss L, Wang Y, Szczepanski MJ, Lang S, Johnson JT and Whiteside TL: T regulatory type 1 cells in squamous cell carcinoma of the head and neck: Mechanisms of suppression and expansion in advanced disease. Clin Cancer Res. 14:3706–3715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zhao Y and Zhang W and Zhang W: Increased prevalence of T(H)17 cells in the peripheral blood of patients with head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 112:81–89. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stockinger B, Veldhoen M and Martin B: Th17 T cells: Linking innate and adaptive immunity. Semin Immunol. 19:353–361. 2007. View Article : Google Scholar : PubMed/NCBI | |
Laad A, Kode J, Chavan S, Rao R, Fakih AR and Chiplunkar S: Limiting dilution analysis of proliferating and cytotoxic lymphocytes in the peripheral blood and tumours of oral cancer patients. Eur J Cancer B Oral Oncol. 32B:1–342. 1996. | |
Sweeny L, Liu Z, Lancaster W, Hart J, Hartman YE and Rosenthal EL: Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor. Laryngoscope. 122:1539–1544. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wheeler SE, Shi H, Lin F, Dasari S, Bednash J, Thorne S, Watkins S, Joshi R and Thomas SM: Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models. Head Neck. 36:385–392. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lim KP, Cirillo N, Hassona Y, Wei W, Thurlow JK, Cheong SC, Pitiyage G, Parkinson EK and Prime SS: Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma. J Pathol. 223:459–469. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Sakakura K, Kawabata-Iwakawa R, Rokudai S, Toyoda M, Nishiyama M and Chikamatsu K: Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother. 64:1407–1417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rosenthal E, McCrory A, Talbert M, Young G, Murphy-Ullrich J and Gladson C: Elevated expression of TGF-beta1 in head and neck cancer-associated fibroblasts. Mol Carcinog. 40:116–121. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xu BJ, Yan W, Jovanovic B, An AQ, Cheng N, Aakre ME, Yi Y, Eng J, Link AJ and Moses HL: Quantitative analysis of the secretome of TGF-beta signaling-deficient mammary fibroblasts. Proteomics. 10:2458–2470. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meng W, Xia Q, Wu L, Chen S, He X, Zhang L, Gao Q and Zhou H: Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts. BMC Cancer. 11:882011. View Article : Google Scholar : PubMed/NCBI | |
Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG and Moses HL: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 303:848–851. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nema R, Vishwakarma S, Agarwal R, Panday RK and Kumar A: Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther. 9:3269–3280. 2016.PubMed/NCBI |