Th17 response in patients with cervical cancer (Review)
- Authors:
- Jayra Juliana Paiva Alves
- Thales Allyrio Araújo de Medeiros Fernandes
- Josélio Maria Galvão de Araújo
- Ricardo Ney Oliveira Cobucci
- Daniel Carlos Ferreira Lanza
- Fabiana Lima Bezerra
- Vânia Sousa Andrade
- José Veríssimo Fernandes
-
Affiliations: Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN 59072‑970, Brazil, Department of Biomedical Sciences, University of Rio Grande do Norte State, Mossoró, RN 59607‑360, Brazil, Department of Gynecology and Obstetrics, Potiguar University, Natal, RN 59056‑00, Brazil, Department of Biochemisty, Federal University of Rio Grande do Norte, Natal, RN 59072‑970, Brazil - Published online on: September 21, 2018 https://doi.org/10.3892/ol.2018.9481
- Pages: 6215-6227
-
Copyright: © Alves et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Catarino R, Petignat P, Dongui G and Vassilakos P: Cervical cancer screening in developing countries at a crossroad: Emerging technologies and policy choices. World J Clin Oncol. 6:281–290. 2015. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bosch FX and de Sanjosé S: The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers. 23:213–227. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lima EG, de Lima DB, Miranda CA, de Sena Pereira VS, de Azevedo JC, de Araújo JM, de Medeiros Fernandes TA, de Azevedo PR and Fernandes JV: Knowledge about HPV and screening of cervical cancer among women from the metropolitan region of Natal, Brazil. ISRN Obstet Gynecol. 2013:9304792013. View Article : Google Scholar : PubMed/NCBI | |
Lin Y and Zhan FB: Geographic variations of racial/ethnic disparities in cervical cancer mortality in Texas. South Med J. 107:281–288. 2014.PubMed/NCBI | |
Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M and Franceschi S: Global burden of human papillomavirus and related diseases. Vaccine. 30 Suppl 5:F12–F23. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vaccarella S, Lortet-Tieulent J, Plummer M, Franceschi S and Bray F: Worldwide trends in cervical cancer incidence: Impact of screening against changes in disease risk factors. Eur J Cancer. 49:3262–3273. 2013. View Article : Google Scholar : PubMed/NCBI | |
Castellsagué X: Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol. 110 3 Suppl 2:S4–S7. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bodily J and Laimins LA: Persistent of human papillomavirus infection: Keys to malignant progression. Trends Microbiol. 19:33–39. 2011. View Article : Google Scholar : PubMed/NCBI | |
Muñoz N, Castellsagué X, de González AB and Gissman L: Chapter 1-HPV in the etiology of human cancer. Vaccine. 24 Suppl 3:S3/1–10. 2006. View Article : Google Scholar | |
Saavedra KP, Brebi PM and Roa JC: Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix. Clin Epigenetics. 4:132012. View Article : Google Scholar : PubMed/NCBI | |
Daud II, Scott ME, Ma Y, Shiboski S, Farhat S and Moscicki AB: Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer. 128:879–886. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mora-García ML and Monroy-García A: Immune response in cervical cancer. Strategies for the development of therapeutic vaccines. Rev Med Inst Mex Seguro Soc. 53 Suppl 2:S206–S211. 2015.PubMed/NCBI | |
Stanley MA: Immune responses to human papilloma viruses. Indian J Med Res. 130:266–276. 2009.PubMed/NCBI | |
Song D, Li H, Li H and Dai J: Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett. 10:600–606. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki A: Antiviral immune responses in the genital tract: Clues for vaccines. Nat Rev Immunol. 10:699–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sasagawa T, Takagi H and Makinoda S: Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J Infect Chemother. 18:807–815. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stanley M: Immunobiology of HPV and HPV vaccines. Gynecol Oncol. 109 Suppl 2:S15–S21. 2008. View Article : Google Scholar : PubMed/NCBI | |
Blaskewicz CD, Pudney J and Anderson DJ: Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod. 85:97–104. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hervouet C, Luci C, Rol N, Rousseau D, Kissenpfennig A, Malissen B, Czerkinsky C and Anjuère F: Langerhans cells prime IL-17-producing T cells and dampen genital cytotoxic responses following mucosal immunization. J Immunol. 184:4842–4851. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kemp TJ, Hildesheim A, García-Piñeres A, Williams MC, Shearer GM, Rodriguez AC, Schiffman M, Burk R, Freer E, Bonilla J, et al: Elevated systemic levels of inflammatory cytokines in older women with persistent cervical human papillomavirus infection. Cancer Epidemiol Biomarkers Prev. 19:1954–1959. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ma D, Zhang Y, Tian Y, Wang X, Qiao Y and Cui B: The imbalance of Th17/Treg in patients with uterine cervical cancer. Clin Chim Acta. 412:894–900. 2011. View Article : Google Scholar : PubMed/NCBI | |
Paradkar PH, Joshi JV, Mertia PN, Agashe SV and Vaidya RA: Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac J Cancer Prev. 15:3851–3864. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cong J, Liu R, Wang X, Sheng L, Jiang H, Wang W, Zhang Y, Yang S and Li C: Association between interluekin-17 gene polymorphisms and the risk of cervical cancer in a Chinese population. Int J Clin Exp Pathol. 8:9567–9573. 2015.PubMed/NCBI | |
Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES and Gorter A: Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncoimmunology. 4:e9845392015. View Article : Google Scholar : PubMed/NCBI | |
Dong C: Targeting Th17 cells in immune diseases. Cell Res. 24:901–903. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schmitt E, Klein M and Bopp T: Th9 cells, new players in adaptive immunity. Trends Immunol. 35:61–68. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kaplan MH: Th9 cells: Differentiation and disease. Immunol Rev. 252:104–115. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goldszmid RS, Dzutsev A and Trinchieri G: Host immune response to infection and cancer: Unexpected commonalities. Cell Host Microbe. 15:295–305. 2014. View Article : Google Scholar : PubMed/NCBI | |
Damsker JM, Hansen AM and Caspi RR: Th1 and Th17 cells: Adversaries and collaborators. Ann N Y Acad Sci. 1183:211–221. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA and Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 136:2348–2357. 1986.PubMed/NCBI | |
Wilson JN, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, et al: Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 8:950–957. 2007. View Article : Google Scholar : PubMed/NCBI | |
Murphy KM and Reiner SL: The lineage decisions of helper T cells. Nat Rev Immunol. 2:933–944. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA and Rudensky AY: Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 445:771–775. 2007. View Article : Google Scholar : PubMed/NCBI | |
Josefowicz SZ, Lu LF and Rudensky AY: Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol. 30:531–564. 2012. View Article : Google Scholar : PubMed/NCBI | |
Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, Azizi G and Baradaran B: The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 322:15–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C and Stockinger B: Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 9:1341–1346. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, et al: Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 119:3573–3585. 2009.PubMed/NCBI | |
Maddur MS, Miossec P, Kaveri SV and Bayry J: Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 181:8–18. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peters A, Lee Y and Kuchroo VK: The many faces of Th17 cells. Curr Opin Immunol. 23:702–706. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ziegler SF and Buckner JH: FOXP3 and the regulation of Treg/Th17 differentiation. Microbes Infect. 11:594–598. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Hamburg JP, Mus AM, de Bruijn MJ, de Vogel L, Boon L, Cornelissen F, Asmawidjaja P, Hendriks RW and Lubberts E: GATA-3 protects against severe joint inflammation and bone erosion and reduces differentiation of Th17 cells during experimental arthritis. Arthritis Rheum. 60:750–759. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J and Wang RF: Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA. 105:15505–15510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nalbant A and Eskier D: Genes associated with T helper 17 cell differentiation and function. Front Biosci (Elite Ed). 8:427–435. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Takaku M, Zou L, Gu AD, Chou WC, Zhang G, Wu B, Kong Q, Thomas SY, Serody JS, et al: Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature. 551:105–109. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Jang SW, Lee W, Kim K, Sohn H, Hwang SS and Lee GR: PTEN drives Th17 cell differentiation by preventing IL-2 production. J Exp Med. 214:3381–3398. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Tan Y, Peng Q, Huang C, Guo Y, Liang G, Zhu B, Huang Y, Liu A, Wang Z, et al: IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun. 9:5832018. View Article : Google Scholar : PubMed/NCBI | |
Karczmarczyk A, Karp M and Giannopoulos K: The role of Th17 cells in tumor immunity Znaczenie limfocytów Th17 w odporności przeciwnowotworowej. Acta Haematol Polonica. 45:155–160. 2014. View Article : Google Scholar | |
Shabgah AG, Fattahi E and Shahneh FZ: Interleukin-17 in human inflammatory diseases. Postepy Dermatol Alergol. 31:256–261. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu B, Tian Z and Wei H: Th17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol. 11:564–570. 2014. View Article : Google Scholar : PubMed/NCBI | |
Arnold CE, Gordon P, Barker RN and Wilson HM: The activation status of human macrophages presenting antigen determines the efficiency of Th17 responses. Immunobiology. 220:10–19. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guéry L and Hugues S: Th17 cell plasticity and functions in cancer immunity. Biomed Res Int. 2015:3146202015. View Article : Google Scholar : PubMed/NCBI | |
Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA and Takayanagi H: Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 20:62–68. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gagliani N, Vesely Amezcua MC, Iseppon A, Brockmann L, Xu H, Palm NW, de Zoete MR, Licona-Limón P, Paiva RS, Ching T, et al: Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 523:221–225. 2015. View Article : Google Scholar : PubMed/NCBI | |
Eyerich S, Eyerich K, Cavani A and Schmidt-Weber C: IL-17 and IL-22: Siblings, not twins. Trends Immunol. 31:354–361. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Livergood RS and Peng G: The role and regulation of human Th17 cells in tumor immunity. Am J Pathol. 182:10–20. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gálvez J: Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014:9284612014. View Article : Google Scholar : PubMed/NCBI | |
Annunziato F, Cosmi L, Liotta F, Maggi E and Romagnani S: Human T helper type 1 dichotomy: Origin, phenotype and biological activities. Immunology. 144:343–351. 2015. View Article : Google Scholar | |
Barnes MJ and Powrie F: Regulatory T cells reinforce intestinal homeostasis. Immunity. 31:401–411. 2009. View Article : Google Scholar : PubMed/NCBI | |
Davidson MG, Alonso MN, Yuan R, Axtell RC, Kenkel JA, Suhoski MM, González JC, Steinman L and Engleman EG: Th17 cells induce Th1-polarizing monocyte-derived dendritic cells. J Immunol. 191:1175–1187. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morrison PJ, Ballantyne SJ and Kullberg MC: Interleukin-23 and T helper 17-type responses in intestinal inflammation: From cytokines to T-cell plasticity. Immunology. 133:397–408. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Wang H, Yang F, Ding Q and Zhao J: Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep. 13:1673–1680. 2016. View Article : Google Scholar : PubMed/NCBI | |
Young MR, Levingston CA and Johnson SD: Treatment to sustain a Th17-type phenotype to prevent skewing toward Treg and to limit premalignant lesion progression to cancer. Int J Cancer. 138:2487–2498. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Lou XM and He Y: Preferential recruitment of Th17 cells to cervical cancer via CCR6-CCL20 pathway. PLoS One. 10:e01208552015. View Article : Google Scholar : PubMed/NCBI | |
Wu MY, Kuo TY and Ho HN: Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc. 110:580–586. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hou F, Li Z, Ma D, Zhang W, Zhang Y, Zhang T, Kong B and Cui B: Distribution of Th17 cells and Foxp3-expressing T cells in tumor-infiltrating lymphocytes in patients with uterine cervical cancer. Clin Chim Acta. 413:1848–1854. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Ding J, Pang N, Du R, Meng W, Zhu Y, Zhang Y, Ma C and Ding Y: The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients. Diagn Pathol. 8:612013. View Article : Google Scholar : PubMed/NCBI | |
Hou F, Ma D and Cui B: Treg cells in different forms of uterine cancer. Clin Chim Acta. 415:337–340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gosmann C, Mattarollo SR, Bridge JA, Frazer IH and Blumenthal A: IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia. J Immunol. 193:2248–2257. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shukla S, Mahata S, Shishodia G, Pandey A, Tyagi A, Vishnoi K, Basir SF, Das BC and Bharti AC: Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One. 8:e678492013. View Article : Google Scholar : PubMed/NCBI | |
Backert I, Koralov SB, Wirtz S, Kitowski V, Billmeier U, Martini E, Hofmann K, Hildner K, Wittkopf N, Brecht K, et al: STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis. J Immunol. 193:3779–3791. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gagliani N, Hu B, Huber S, Elinav E and Flavell RA: The fire within: Microbes inflame tumors. Cell. 157:776–783. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li YX, Zhang L, Simayi D, Zhang N, Tao L, Yang L, Zhao J, Chen YZ, Li F and Zhang WJ: Human papillomavirus infection correlates with inflammatory Stat3 signaling activity and IL-17 level in patients with colorectal cancer. PLoS One. 10:e01183912015. View Article : Google Scholar : PubMed/NCBI | |
Vidal AC, Skaar D, Maguire R, Dodor S, Musselwhite LW, Bartlett JA, Oneko O, Obure J, Mlay P, Murphy SK and Hoyo C: IL-10, IL-15, IL-17, and GMCSF levels in cervical cancer tissue of Tanzanian women infected with HPV16/18 vs. non-HPV16/18 genotypes. Infect Agent Cancer. 10:102015. View Article : Google Scholar : PubMed/NCBI | |
Liang W and Ferrara N: The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res. 4:83–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gaffen SL: An overview of IL-17 function and signaling. Cytokine. 43:402–407. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bettelli E, Korn T, Oukka M and Kuchroo VK: Induction and effector functions of T(H)17 cells. Nature. 453:1051–1057. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cua DJ and Tato CM: Innate IL-17-producin cells: The sentinels of the immune system. Nat Rev Immunol. 10:479–489. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pappu R, Ramirez-Carrozzi V and Sambandam A: The interleukin-17 cytokine family: Critical players in host defence and inflammatory diseases. Immunology. 134:8–16. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bie Q, Jin C, Zhang B and Dong H: IL-17B: A new area of study in the IL-17 family. Mol Immunol. 90:50–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mills KH: Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 38:2636–2649. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huber M, Heink S, Grothe H, Guralnik A, Reinhard K, Elflein K, Hünig T, Mittrücker HW, Brüstle A, Kamradt T and Lohoff M: A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity. Eur J Immunol. 39:1716–1725. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tajima M, Wakita D, Satoh T, Kitamura H and Nishimura T: IL-17/IFN-γ double producing CD8+ T (Tc17/IFN-γ) cells: A novel cytotoxic T-cell subset converted from Tc17 cells by IL-12. Int Immunol. 23:751–759. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Hou F, Liu X, Ma D, Zhang Y, Kong B and Cui B: Tc17 cells in patients with uterine cervical cancer. PLoS One. 9:e868122014. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Shen F, Crellin NK and Ouyang W: The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann N Y Acad Sci. 1217:60–76. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M, Goldman SJ, Dunussi-Joannopoulos K, Williams CM, Wright JF and Fouser LA: An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol. 179:7791–7799. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wright JF, Guo Y, Quazi A, Luxenberg DP, Bennett F, Ross JF, Qiu Y, Whitters MJ, Tomkinson KN, Dunussi-Joannopoulos K, et al: Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem. 282:13447–13455. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gaffen SL: Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 9:556–567. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ron D, Fuchs Y and Chorev DS: Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol. 40:2040–2052. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mellett M, Atzei P, Horgan A, Hams E, Floss T, Wurst W, Fallon PG and Moynagh PN: Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nat Commun. 3:11192012. View Article : Google Scholar : PubMed/NCBI | |
Trajkovic V, Stosic-Grujicic S, Samardzic T, Markovic M, Miljkovic D, Ramic Z and Stojkovic Mostarica M: Interleukin-17 stimulates inducible nitric oxide synthase activation in rodent astrocytes. J Neuroimmunol. 119:183–191. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ruddy MJ, Wong GC, Liu XK, Yamamoto H, Kasayama S, Kirkwood KL and Gaffen SL: Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem. 279:2559–2567. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhu S and Qian Y: IL-17/IL-17 receptor system in autoimmune disease: Mechanisms and therapeutic potential. Clin Sci (Lond). 122:487–511. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang F, Kao CY, Wachi S, Thai P, Ryu J and Wu R: Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J Immunol. 179:6504–6513. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saleh A, Shan L, Halayko AJ, Kung S and Gounni AS: Critical role for STAT3 in IL-17A-mediated CCL11 expression in human airway smooth muscle cells. J Immunol. 182:3357–3365. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hartupee J, Liu C, Novotny M, Sun D, Li X and Hamilton TA: IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J Immunol. 182:1660–1666. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Novotny M, Bulek K, Liu C, Li X and Hamilton TA: Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nature Immunol. 12:853–860. 2011. View Article : Google Scholar | |
Lv Q, Zhu D, Zhang J, Yi Y, Yang S and Zhang W: Association between six genetic variants of IL-17A and IL-17F and cervical cancer risk: A case-control study. Tumour Biol. 36:3979–3984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, Claret E, Sastre-Garau X, Couturier J, Mosseri V, Vives V, et al: Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res. 59:3698–3704. 1999.PubMed/NCBI | |
Feng M, Wang Y, Chen K, Bian Z, Jinfang Wu and Gao Q: IL-17A promotes the migration and invasiveness of cervical cancer cells by coordinately activating MMPs expression via the p38/NF-κB signal pathway. PLoS One. 9:e1085022014. View Article : Google Scholar : PubMed/NCBI | |
Walch-Rückheim B, Mavrova R, Henning M, Vicinus B, Kim YJ, Bohle RM, Juhasz-Böss I, Solomayer EF and Smola S: Stromal fibroblasts induce CCL20 through IL6/C/EBPβ to support the recruitment of Th17 cells during cervical cancer progression. Cancer Res. 75:5248–5259. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Wang Y, Chen C, Zhu X, Zhu H and Hu Y: Effects of Th17 cells and IL-17 in the progression of cervical carcinogenesis with high-risk human papillomavirus infection. Cancer Med. 7:297–306. 2018. View Article : Google Scholar : PubMed/NCBI | |
Quan Y, Zhou B, Wang Y, Duan R, Wang K, Gao Q, Shi S, Song Y, Zhang L and Xi M: Association between IL17 polymorphisms and risk of cervical cancer in Chinese women. Clin Dev Immunol. 2012:2582932012. View Article : Google Scholar : PubMed/NCBI | |
Li L, Tian YL, Lv XM, Yu HF, Xie YY, Wang JD and Shi W: Association analysis of IL-17A and IL-17F polymorphisms in Chinese women with cervical cancer. Genet Mol Res. 14:12178–12183. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun LX, Wang XB and Huang XJ: Association analysis of rs2275913G>A and rs763780T>C interleukin 17 polymorphisms in Chinese women with cervical cancer. Genet Mol Res. 14:13612–13617. 2015.PubMed/NCBI | |
Hardikar S, Johnson LG, Malkki M, Petersdorf EW, Galloway DA, Schwartz SM and Madeleine MM: A population-based case-control study of genetic variation in cytokine genes associated with risk of cervical and vulvar cancers. Gynecol Oncol. 139:90–96. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Duan L, Qian X, Fan J, Lv Z, Zhang X, Han J, Wu F, Guo M, Hu G, et al: IL-17 promotes angiogenic factors IL-6, IL-8, and Vegf production via Stat1 in lung adenocarcinoma. Sci Rep. 6:365512016. View Article : Google Scholar : PubMed/NCBI | |
Mandic A, Knezevic Usaj S and Ivkovic Kapicl T: Tissue expression of VEGF in cervical intraepithelial neoplasia and cervical cancer. J BUON. 19:958–964. 2014.PubMed/NCBI | |
Zhang J, Liu J, Zhu C, He J, Chen J, Liang Y, Yang F, Wu X and Ma X: Prognostic role of vascular endothelial growth factor in cervical cancer: A meta-analysis. Oncotarget. 8:24797–24803. 2017.PubMed/NCBI |