Novel insight into the function of tankyrase (Review)
- Authors:
- Mi Kyung Kim
-
Affiliations: Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea - Published online on: October 5, 2018 https://doi.org/10.3892/ol.2018.9551
- Pages: 6895-6902
-
Copyright: © Kim . This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
Bürkle A: Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 272:4576–4589. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haikarainen T, Krauss S and Lehtio L: Tankyrases: Structure, function and therapeutic implications in cancer. Curr Pharm Des. 20:6472–6488. 2014. View Article : Google Scholar : PubMed/NCBI | |
Riffell JL, Lord CJ and Ashworth A: Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family. Nat Rev Drug Discov. 11:923–936. 2012. View Article : Google Scholar : PubMed/NCBI | |
Malanga M and Althaus FR: The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol. 83:354–364. 2005. View Article : Google Scholar : PubMed/NCBI | |
Luo X and Kraus WL: On PAR with PARP: Cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26:417–432. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kraus WL and Lis JT: PARP goes transcription. Cell. 113:677–683. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yeh TY, Sbodio JI, Tsun ZY, Luo B and Chi NW: Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase. Biochem J. 402:279–290. 2007. View Article : Google Scholar : PubMed/NCBI | |
Beneke S and Bürkle A: Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Res. 35:7456–7465. 2007. View Article : Google Scholar : PubMed/NCBI | |
Otto H, Reche PA, Bazan F, Dittmar K, Haag F and Koch-Nolte F: In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics. 6:1392005. View Article : Google Scholar : PubMed/NCBI | |
Hsiao SJ and Smith S: Tankyrase function at telomeres, spindle poles, and beyond. Biochimie. 90:83–92. 2008. View Article : Google Scholar : PubMed/NCBI | |
Smith S, Giriat I, Schmitt A and de Lange T: Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science. 282:1484–1487. 1998. View Article : Google Scholar : PubMed/NCBI | |
Seimiya H and Smith S: The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182). J Biol Chem. 277:14116–14126. 2002. View Article : Google Scholar : PubMed/NCBI | |
De Rycker M and Price CM: Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. Mol Cell Biol. 24:9802–9812. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R and Sicheri F: Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell. 147:1340–1354. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, Wang W, Songyang Z, Lin C, Yang L, et al: Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Genes Dev. 29:157–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian XH, Hou WJ, Fang Y, Fan J, Tong H, Bai SL, Chen Q, Xu H and Li Y: XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 32:1002013. View Article : Google Scholar : PubMed/NCBI | |
Smith S and de Lange T: Tankyrase promotes telomere elongation in human cells. Curr Biol. 10:1299–1302. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chang P, Coughlin M and Mitchison TJ: Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol. 7:1133–1139. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chang W, Dynek JN and Smith S: NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem J. 391:177–184. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim MK, Dudognon C and Smith S: Tankyrase 1 regulates centrosome function by controlling CPAP stability. EMBO Rep. 13:724–732. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim MK and Smith S: Persistent telomere cohesion triggers a prolonged anaphase. Mol Biol Cell. 25:30–40. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo HL, Zhang C, Liu Q, Li Q, Lian G, Wu D, Li X, Zhang W, Shen Y, Ye Z, et al: The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Res. 22:1246–1257. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yeh TY, Sbodio JI and Chi NW: Mitotic phosphorylation of tankyrase, a PARP that promotes spindle assembly, by GSK3. Biochem Biophys Res Commun. 350:574–579. 2006. View Article : Google Scholar : PubMed/NCBI | |
Levaot N, Voytyuk O, Dimitriou I, Sircoulomb F, Chandrakumar A, Deckert M, Krzyzanowski PM, Scotter A, Gu S, Janmohamed S, et al: Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell. 147:1324–1339. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kang DH, Lee DJ, Lee S, Lee SY, Jun Y, Kim Y, Kim Y, Lee JS, Lee DK, Lee S, et al: Interaction of tankyrase and peroxiredoxin II is indispensable for the survival of colorectal cancer cells. Nat Commun. 8:402017. View Article : Google Scholar : PubMed/NCBI | |
Croy HE, Fuller CN, Giannotti J, Robinson P, Foley AV, Yamulla RJ, Cosgriff S, Greaves BD, von Kleeck RA, An HH, et al: The poly(ADP-ribose) polymerase enzyme tankyrase antagonizes activity of the β-catenin destruction complex through ADP-ribosylation of axin and APC2. J Biol Chem. 291:12747–12760. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li N, Li X, Tran MK, Han X and Chen J: Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep. 13:524–532. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tripathi E and Smith S: Cell cycle-regulated ubiquitination of tankyrase 1 by RNF8 and ABRO1/BRCC36 controls the timing of sister telomere resolution. EMBO J. 36:503–519. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuusela S, Wang H, Wasik AA, Suleiman H and Lehtonen S: Tankyrase inhibition aggravates kidney injury in the absence of CD2AP. Cell Death Dis. 7:e23022016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Han H, Zhou MT, Yang B, Ta AP, Li N, Chen J and Wang W: Proteomic analysis of the human tankyrase protein interaction network reveals its role in pexophagy. Cell Rep. 20:737–749. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang W, Dynek JN and Smith S: TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17:1328–1333. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Huang J and Chen J: Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem. 286:4364–4370. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ha GH, Kim HS, Go H, Lee H, Seimiya H, Chung DH and Lee CW: Tankyrase-1 function at telomeres and during mitosis is regulated by Polo-like kinase-1-mediated phosphorylation. Cell Death Differ. 19:321–332. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chi NW and Lodish HF: Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem. 275:38437–38444. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yan Y and Lackner MR: FOXO3a and β-catenin co-localization: Double trouble in colon cancer? Nat Med. 18:854–856. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bisht KK, Dudognon C, Chang WG, Sokol ES, Ramirez A and Smith S: GDP-mannose-4,6-dehydratase is a cytosolic partner of tankyrase 1 that inhibits its poly(ADP-ribose) polymerase activity. Mol Cell Biol. 32:3044–3053. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, Morin GB, Yaswen P and Campisi J: TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J Biol Chem. 276:35891–35899. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cerone MA, Burgess DJ, Naceur-Lombardelli C, Lord CJ and Ashworth A: High-throughput RNAi screening reveals novel regulators of telomerase. Cancer Res. 71:3328–3340. 2011. View Article : Google Scholar : PubMed/NCBI | |
Seimiya H, Muramatsu Y, Ohishi T and Tsuruo T: Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell. 7:25–37. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Lei Z, Lu Z, Lu Q, Lu C, Chen W, Wang C, Tang Q and Kong Q: Silencing tankyrase and telomerase promotes A549 human lung adenocarcinoma cell apoptosis and inhibits proliferation. Oncol Rep. 30:1745–1752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yang MH, Zhao JJ, Chen L, Yu ST, Tang XD, Fang DC and Yang SM: Inhibition of tankyrase 1 in human gastric cancer cells enhances telomere shortening by telomerase inhibitors. Oncol Rep. 24:1059–1065. 2010.PubMed/NCBI | |
Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, Asthana S, Neel D, Yan JJ, Lu X, et al: The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet. 47:250–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S and Polakis P: Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 272:1023–1026. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, et al: A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73:3132–3144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, Paulsen JE, Pedersen NM, Eide TJ, Machonova O, et al: A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 72:2822–2832. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Luo F, Li J, Zhong X and Liu K: Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol. 48:1333–1340. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pacheco-Pinedo EC, Durham AC, Stewart KM, Goss AM, Lu MM, Demayo FJ and Morrisey EE: Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Invest. 121:1935–1945. 2011. View Article : Google Scholar : PubMed/NCBI | |
Busch AM, Johnson KC, Stan RV, Sanglikar A, Ahmed Y, Dmitrovsky E and Freemantle SJ: Evidence for tankyrases as antineoplastic targets in lung cancer. BMC Cancer. 13:2112013. View Article : Google Scholar : PubMed/NCBI | |
Casás-Selves M, Kim J, Zhang Z, Helfrich BA, Gao D, Porter CC, Scarborough HA, Bunn PA Jr, Chan DC, Tan AC and DeGregori J: Tankyrase and the canonical Wnt pathway protect lung cancer cells from EGFR inhibition. Cancer Res. 72:4154–4164. 2012. View Article : Google Scholar : PubMed/NCBI | |
Halder G and Johnson RL: Hippo signaling: Growth control and beyond. Development. 138:9–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Li L, Lei Q and Guan KL: The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version. Genes Dev. 24:862–874. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A and Pan D: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 130:1120–1133. 2007. View Article : Google Scholar : PubMed/NCBI | |
Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mo JS, Park HW and Guan KL: The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15:642–656. 2014.PubMed/NCBI | |
Wang H, Lu B, Castillo J, Zhang Y, Yang Z, McAllister G, Lindeman A, Reece-Hoyes J, Tallarico J, Russ C, et al: Tankyrase inhibitor sensitizes lung cancer cells to Endothelial Growth Factor Receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting YAP signaling. J Biol Chem. 291:15256–15266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, et al: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 275:1943–1947. 1997. View Article : Google Scholar : PubMed/NCBI | |
Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, et al: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 15:356–362. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, et al: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 16:64–67. 1997. View Article : Google Scholar : PubMed/NCBI | |
Losada A and Hirano T: Dynamic molecular linkers of the genome: The first decade of SMC proteins. Genes Dev. 19:1269–1287. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nasmyth K and Haering CH: The structure and function of SMC and kleisin complexes. Annu Rev Biochem. 74:595–648. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, et al: Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell. 47:694–706. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boveri T: Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 121 Suppl 1:S1–S84. 2008. View Article : Google Scholar | |
Duensing S and Münger K: Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta. 1471:M81–M88. 2001.PubMed/NCBI | |
Ganem NJ, Godinho SA and Pellman D: A mechanism linking extra centrosomes to chromosomal instability. Nature. 460:278–282. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guerrero AA, Martínez-A C and van Wely KH: Merotelic attachments and non-homologous end joining are the basis of chromosomal instability. Cell Div. 5:132010. View Article : Google Scholar : PubMed/NCBI | |
Korzeniewski N, Hohenfellner M and Duensing S: The centrosome as potential target for cancer therapy and prevention. Expert Opin Ther Targets. 17:43–52. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goodwin JF and Knudsen KE: Beyond DNA repair: DNA-PK function in cancer. Cancer Discov. 4:1126–1139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gagné JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, Dawson TM and Poirier GG: Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36:6959–6976. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ and Peterson SR: Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem. 273:14461–14467. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dregalla RC, Zhou J, Idate RR, Battaglia CL, Liber HL and Bailey SM: Regulatory roles of tankyrase 1 at telomeres and in DNA repair: Suppression of T-SCE and stabilization of DNA-PKcs. Aging (Albany NY). 2:691–708. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nagy Z, Kalousi A, Furst A, Koch M, Fischer B and Soutoglou E: Tankyrase promote homologous recombination and check point activation in response to DSBs. PLoS Genet. 12:e10057912016. View Article : Google Scholar : PubMed/NCBI | |
Arqués O, Chicote I, Puig I, Tenbaum SP, Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J, Silberschmidt D, et al: Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res. 22:644–656. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bao R, Christova T, Song S, Angers S, Yan X and Attisano L: Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. PLoS One. 7:e486702012. View Article : Google Scholar : PubMed/NCBI | |
Quackenbush KS, Bagby S, Tai WM, Messersmith WA, Schreiber A, Greene J, Kim J, Wang G, Purkey A, Pitts TM, et al: The novel tankyrase inhibitor (AZ1366) enhances irinotecan activity in tumors that exhibit elevated tankyrase and irinotecan resistance. Oncotarget. 7:28273–28285. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stratford EW, Daffinrud J, Munthe E, Castro R, Waaler J, Krauss S and Myklebost O: The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines. Cancer Med. 3:36–46. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Hou W, Bai S, Fan J, Tong H and Xu H: XAV939 inhibits the stemness and migration of neuroblastoma cancer stem cells via repression of tankyrase 1. Int J Oncol. 45:121–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mashima T, Taneda Y, Jang MK, Mizutani A, Muramatsu Y, Yoshida H, Sato A, Tanaka N, Sugimoto Y and Seimiya H: mTOR signaling mediates resistance to tankyrase inhibitors in Wnt-driven colorectal cancer. Oncotarget. 8:47902–47915. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tenbaum SP, Ordóñez-Morán P, Puig I, Chicote I, Arqués O, Landolfi S, Fernández Y, Herance JR, Gispert JD, Mendizabal L, et al: β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 18:892–901. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thomson DW, Wagner AJ, Bantscheff M, Benson RE, Dittus L, Duempelfeld B, Drewes G, Krause J, Moore JT, Mueller K, et al: Discovery of a highly selective tankyrase inhibitor displaying growth inhibition effects against a diverse range of tumor derived cell lines. J Med Chem. 60:5455–5471. 2017. View Article : Google Scholar : PubMed/NCBI | |
Keren-Paz A, Emmanuel R and Samuels Y: YAP and the drug resistance highway. Nat Genet. 47:193–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peters JM and Nishiyama T: Sister chromatid cohesion. Cold Spring Harb Perspect Biol. 4(pii): a0111302012.PubMed/NCBI | |
Canudas S and Smith S: Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J Cell Biol. 187:165–173. 2009. View Article : Google Scholar : PubMed/NCBI | |
Matovinović MS: Podocyte injury in glomerular diseases. EJIFCC. 20:21–27. 2009.PubMed/NCBI |