1
|
Lipsky BP, Beals CR and Staunton DE:
Leupaxin is a novel LIM domain protein that forms a complex with
PYK2. J Biol Chem. 273:11709–22713. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen PW and Kroog GS: Leupaxin is similar
to paxillin in focal adhesion targeting and tyrosine
phosphorylation but has distinct roles in cell adhesion and
spreading. Cell Adh Migr. 4:527–540. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Deakin NO, Pignatelli J and Turner CE:
Diverse roles for the paxillin family of proteins in cancer. Genes
Cancer. 3:362–370. 2015. View Article : Google Scholar
|
4
|
Kaulfuss S, von Hardenberg S, Schweyer S,
Herr AM, Laccone F, Wolf S and Burfeind P: Leupaxin acts as a
mediator in prostate carcinoma progression through deregulation of
p120catenin expression. Oncogene. 28:3971–3982. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Watanabe N, Amano N, Ishizuka H and
Mashima K: Leupaxin binds to PEST domain tyrosine phosphatase PEP.
Mol Cell Biochem. 269:13–17. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sundberg-Smith LJ, DiMichele LA, Sayers
RL, Mack CP and Taylor JM: The LIM protein leupaxin is enriched in
smooth muscle and functions as an serum response factor cofactor to
induce smooth muscle cell gene transcription. Circ Res.
102:1502–1511. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Petti F, Thelemann A, Kahler J, McCormack
S, Castaldo L, Hunt T, Nuwaysir L, Zeiske L, Haack H, Sullivan L,
et al: Temporal quantitation of mutant kit tyrosine kinase
signaling attenuated by a novel thiophene kinase inhibitor OSI-930.
Mol Cancer Ther. 4:1186–1197. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tanaka T, Moriwaki K, Murata S and
Miyasaka M: LIM domain-containing adaptor, leupaxin, localizes in
focal adhesion and suppresses the integrin-induced tyrosine
phosphorylation of paxillin. Cancer Sci. 101:363–368. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Dai HP, Xue YQ, Zhou JW, Li AP, Wu YF, Pan
JL, Wang Y and Zhang J: LPXN, a member of the paxillin superfamily,
is fused to RUNX1 in an acute myeloid leukemia patient with a
t(11;21)(q12;q22) translocation. Genes Chromosomes Cancer.
48:1027–1036. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Abe A, Yamamoto Y, Iba S, Kanie T, Okamoto
A, Tokuda M, Inaguma Y, Yanada M, Morishima S, Mizuta S, et al:
ETV6-LPXN fusion transcript generated by t(11;12) (q12.1;p13) in a
patient with relapsing acute myeloid leukemia with NUP98-HOXA9.
Genes Chromosomes Cancer. 55:242–250. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang CL, Chen ZX, Li ZJ and Cen J: The
essential roles of matrix metalloproteinase-2, membrane type 1
metalloproteinase and tissue inhibitor of metalloproteinase-2 in
the invasive capacity of acute monocytic leukemia SHI-1 cells. Leuk
Res. 34:1083–1090. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kaulfuss S, Grzmil M, Hemmerlein B, Thelen
P, Schweyer S, Neesen J, Bubendorf L, Glass AG, Jarry H, Auber B,
et al: Leupaxin, a novel coactivator of the androgen receptor, is
expressed in prostate cancer and plays a role in adhesion and
invasion of prostate carcinoma cells. Mol Endocrinol. 22:1606–1621.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu GH, Dai HP, Shen Q, Ji O, Zhang Q and
Zhai YL: Curcumin induces apoptosis and suppresses invasion through
MAPK and MMP signaling in human monocytic leukemia SHI-1 cells.
Pharm Biol. 54:1303–1311. 2016.PubMed/NCBI
|
14
|
Schaller MD: Paxillin: A focal
adhesion-associated adapter protein. Oncogene. 20:6459–6472. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
van Nimwegen MJ and van de Water B: Focal
adhesion kinase: A potential target in cancer therapy. Biochem
Pharmacol. 73:597–609. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Calderwood DA, Shattil SJ and Ginsberg MH:
Integrins and actin filaments: Reciprocal regulation of cell
adhesion and signaling. J Biol Chem. 275:22607–22610. 2000.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Omari S: Focal adhesion kinase: A key
mediator of cancer pathogenesis. HealthMED. 5:807–818. 2011.
|
18
|
Sahu SN, Nunez S, Bai G and Gupta A:
Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer
cells. Am J Physiol Cell Physiol. 292:C2288–C2296. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shi J, Wu WJ, Hu G, Yu X, Yu GS, Lu H,
Yang ML, Liu B and Wu ZX: Regulation of β-catenin transcription
activity by leupaxin in hepatocellular carcinoma. Tumour Biol.
37:2313–2320. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sahu SN, Khadeer MA, Robertson BW, Núñez
SM, Bai G and Gupta A: Association of leupaxin with Src in
osteoclasts. Am J Physiol Cell Physiol. 292:C581–C590. 2007.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kaulfuss S, Herr AM, Büchner A, Hemmerlein
B, Günthert AR and Burfeind P: Leupaxin is expressed in mammary
carcinoma and acts as a transcriptional activator of the estrogen
receptor α. Int J Oncol. 47:106–114. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vanarotti MS, Finkelstein DB, Guibao CD,
Nourse A, Miller DJ and Zheng JJ: Structural basis for the
interaction between Pyk2-FAT domain and leupaxin LD repeats.
Biochemistry. 55:1332–1345. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dierks S, von Hardenberg S, Schmidt T,
Bremmer F, Burfeind P and Kaulfuss S: Leupaxin stimulates adhesion
and migration of prostate cancer cells through modulation of the
phosphorylation status of the actin-binding protein caldesmon.
Oncotarget. 6:13591–13606. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen DL, Wang ZQ, Ren C, Zeng ZL, Wang DS,
Luo HY, Wang F, Qiu MZ, Bai L, Zhang DS, et al: Abnormal expression
of paxillin correlates with tumor progression and poor survival in
patients with gastric cancer. J Transl Med. 11:2772013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chew V and Lam KP: Leupaxin negatively
regulates B cell receptor signaling. J Biol Chem. 282:27181–27191.
2007. View Article : Google Scholar : PubMed/NCBI
|