1
|
Shanafelt TD, Byrd JC, Call TG, Zent CS
and Kay NE: Narrative review: Initial management of newly
diagnosed, early-stage chronic lymphocytic leukemia. Ann Intern
Med. 145:435–447. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zenz T, Mertens D, Küppers R, Döhner H and
Stilgenbauer S: From pathogenesis to treatment of chronic
lymphocytic leukaemia. Nat Rev Cancer. 10:37–50. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang S and Kipps T: The pathogenesis of
chronic lymphocytic leukemia. Annu Rev Pathol. 9:103–118. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Döhner H, Stilgenbauer S, Benner A,
Leupolt E, Kröber A, Bullinger L, Döhner K, Bentz M and Lichter P:
Genomic aberrations and survival in chronic lymphocytic leukemia. N
Engl J Med. 343:1910–1916. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kipps TJ, Stevenson FK, Wu CJ, Croce CM,
Packham G, Wierda WG, O'Brien S, Gribben J and Rai K: Chronic
lymphocytic leukaemia. Nat Rev Dis Primers. 3:160962017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Balatti V, Pekarky Y and Croce CM: Role of
microRNA in chronic lymphocytic leukemia onset and progression. J
Hematol Oncol. 8:122015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fabbri M, Bottoni A, Shimizu M, Spizzo R,
Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE,
et al: Association of a microRNA/TP53 feedback circuitry with
pathogenesis and outcome of B-cell chronic lymphocytic leukemia.
JAMA. 305:59–67. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Martín-Subero JI, López-Otín C and Campo
E: Genetic and epigenetic basis of chronic lymphocytic leukemia.
Curr Opin Hematol. 20:362–368. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kröber A, Seiler T, Benner A, Bullinger L,
Brückle E, Lichter P, Döhner H and Stilgenbauer S: V(H) mutation
status, CD38 expression level, genomic aberrations, and survival in
chronic lymphocytic leukemia. Blood. 100:1410–1416. 2002.PubMed/NCBI
|
10
|
Ghia P, Stamatopoulos K, Belessi C, Moreno
C, Stilgenbauer S, Stevenson F, Davi F and Rosenquist R: European
Research Initiative on CLL: ERIC recommendations on IGHV gene
mutational status analysis in chronic lymphocytic leukemia.
Leukemia. 21:1–3. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Amaya-Chanaga CI and Rassenti LZ:
Biomarkers in chronic lymphocytic leukemia: Clinical applications
and prognostic markers. Best Pract Res Clin Haematol. 29:79–89.
2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
D'Arena G, Musto P, Cascavilla N,
Dell'Olio M, Di Renzo N, Perla G, Savino L and Carotenuto M: CD38
expression correlates with adverse biological features and predicts
poor clinical outcome in B-cell chronic lymphocytic leukemia. Leuk
Lymphoma. 42:109–114. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hayat A, O'Brien D, O'Rourke P, McGuckin
S, Fitzgerald T, Conneally E, Browne PV, McCann SR, Lawler MP and
Vandenberghe E: CD38 expression level and pattern of expression
remains a reliable and robust marker of progressive disease in
chronic lymphocytic leukemia. Leuk Lymphoma. 47:2371–2379. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Oscier DG, Rose-Zerilli M, Winkelmann N,
Gonzalez de Castro D, Gomez B, Forster J, Parker H, Parker A,
Gardiner A, Collins A, et al: The clinical significance of NOTCH1
and SF3B1 mutations in the UK LRF CLL4 trial. Blood. 121:468–475.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dürig J, Naschar M, Schmücker U,
Renzing-Köhler K, Hölter T, Hüttmann A and Dührsen U: CD38
expression is an important prognostic marker in chronic lymphocytic
leukaemia. Leukemia. 16:30–35. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Del Poeta G, Maurillo L, Venditti A,
Buccisano F, Epiceno AM, Capelli G, Tamburini A, Suppo G, Battaglia
A, Del Principe MI, et al: Clinical significance of CD38 expression
in chronic lymphocytic leukemia. Blood. 98:2633–2639. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Rassenti LZ, Jain S, Keating ML, Wierda
WG, Grever MR, Byrd JC, Kay NE, Brown JR, Gribben JG, Neuberg DS,
et al: Relative value of ZAP-70, CD38, and immunoglobulin mutation
status in predicting aggressive disease in chronic lymphocytic
leukemia. Blood. 112:1923–1930. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ghia P, Guida G, Stella S, Gottardi D,
Geuna M, Strola G, Scielzo C and Caligaris-Cappio F: The pattern of
CD38 expression defines a distinct subset of chronic lymphocytic
leukemia (CLL) patients at risk of disease progression. Blood.
101:1262–1269. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Rai KR, Sawitsky A, Cronkite EP, Chanana
AD, Levy RN and Pasternack BS: Clinical staging of chronic
lymphocytic leukemia. Blood. 46:219–234. 1975.PubMed/NCBI
|
20
|
Binet JL, Auquier A, Dighiero G, Chastang
C, Piguet H, Goasguen J, Vaugier G, Potron G, Colona P, Oberling F,
et al: A new prognostic classification of chronic lymphocytic
leukemia derived from a multivariate survival analysis. Cancer.
48:198–206. 1981. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wierda WG, O'Brien S, Wang X, Faderl S,
Ferrajoli A, Do KA, Cortes J, Thomas D, Garcia-Manero G, Koller C,
et al: Prognostic nomogram and index for overall survival in
previously untreated patients with chronic lymphocytic leukemia.
Blood. 109:4679–4685. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pinho SS and Reis CA: Glycosylation in
cancer: Mechanisms and clinical implications. Nat Rev Cancer.
15:540–555. 2015. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Varki A, Kannagi R and Toole BP:
Glycosylation changes in cancer. In Essentials of Glycobiology.
2nd. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi
CR, Hart GW and Etzler ME: Cold spring harbor laboratory press; NY:
2017
|
24
|
Oliveira-Ferrer L, Legler K and
Milde-Langosch K: Role of protein glycosylation in cancer
metastasis. Semin Cancer Biol. 44:141–152. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ebrahim AH, Alalawi Z, Mirandola L,
Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E,
Figueroa JA and Chiriva-Internati M: Galectins in cancer :
Carcinogenesis, diagnosis and therapy. Ann Transl Med.
2:882014.PubMed/NCBI
|
26
|
Giordano M, Croci DO and Rabinovich GA:
Galectins in hematological malignancies. Curr Opin Hematol.
20:327–335. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pena C, Mirandola L, Figueroa JA,
Hosiriluck N, Suvorava N, Trotter K, Reidy A, Rakhshanda R, Payne
D, Jenkins M, et al: Galectins as therapeutic targets for
hematological malignancies: A hopeful sweetness. Ann Transl Med.
2:872014.PubMed/NCBI
|
28
|
Cousin JM and Cloninger MJ: The role of
galectin-1 in cancer progression, and synthetic multivalent systems
for the study of Galectin-1. Int J Mol Sci. 17(pii): E15662016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Asgarian-Omran H, Forghani P,
Hojjat-Farsangi M, Roohi A, Sharifian RA, Razavi SM, Jeddi-Tehrani
M, Rabbani H and Shokri F: Expression profile of galectin-1 and
galectin-3 molecules in different subtypes of chronic lymphocytic
leukemia. Cancer Invest. 28:717–725. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen C, Duckworth CA, Zhao Q, Pritchard
DM, Rhodes JM and Yu LG: Increased circulation of galectin-3 in
cancer induces secretion of metastasis-promoting cytokines from
blood vascular endothelium. Clin Cancer Res. 19:1693–1704. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Colomb F, Wang W, Simpson D, Zafar M,
Beynon R, Rhodes JM and Yu LG: Galectin-3 interacts with the
cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion
of metastasis-promoting cytokines from vascular endothelial cells.
J Biol Chem. 292:8381–8389. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Taghiloo S, Allahmoradi E, Ebadi R,
Tehrani M, Hosseini-Khah Z, Janbabaei G, Shekarriz R and
Asgarian-Omran H: Upregulation of Galectin-9 and PD-L1 immune
checkpoints molecules in patients with chronic lymphocytic
leukemia. Asian Pac J Cancer Prev. 18:2269–2274. 2017.PubMed/NCBI
|
33
|
Junking M and Wongkham C: Decreased
expression of galectin-3 is associated with metastatic potential of
liver fluke-associated cholangiocarcinoma. Eur J Cancer.
44:6192008-626. View Article : Google Scholar
|
34
|
Lee JW, Song SY, Choi JJ, Choi CH, Kim TJ,
Kim J, Lee JH, Kim BG and Bae DS: Decreased galectin-3 expression
during the progression of cervical neoplasia. J Cancer Res Clin
Oncol. 132:241–247. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Matsuda Y, Yamagiwa Y, Fukushima K, Ueno Y
and Shimosegawa T: Expression of galectin-3 involved in prognosis
of patients with hepatocellular carcinoma. Hepatol Res.
38:1098–1111. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Prieto VG, Mourad-Zeidan AA, Melnikova V,
Johnson MM, Lopez A, Diwan AH, Lazar AJ, Shen SS, Zhang PS, Reed
JA, et al: Galectin-3 expression is associated with tumor
progression and pattern of sun exposure in melanoma. Clin Cancer
Res. 12:6709–6715. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nakahara S, Oka N and Raz A: On the role
of galectin-3 in cancer apoptosis. Apoptosis. 10:267–275. 2005.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Koyama S, Akbay E, Li YY, Herter-Sprie GS,
Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina
H, et al: Adaptive resistance to therapeutic PD-1 blockade is
associated with upregulation of alternative immune checkpoints. Nat
Commun. 7:105012016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sakuishi K, Apetoh L, Sullivan JM, Blazar
BR, Kuchroo VK and Anderson AC: Targeting Tim-3 and PD-1 pathways
to reverse T cell exhaustion and restore anti-tumor immunity. J Exp
Med. 207:2187–2194. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhou Q, Munger M, Veenstra RG, Weigel BJ,
Hirashima M, Munn DH, Murphy WJ, Azuma M, Anderson AC, Kuchroo VK
and NBlazar BR: Coexpression of Tim-3 and PD-1 identifies a CD8+
T-cell exhaustion phenotype in mice with disseminated acute
myelogenous leukemia. Blood,. 117:4501–4510. 2011. View Article : Google Scholar
|
41
|
Dalotto-Moreno T, Croci D, Cerliani JP,
Martinez-Allo VC, Dergan-Dylon S, Méndez-Huergo SP, Stupirski JC,
Mazal D, Osinaga E, Toscano MA, et al: Targeting galectin-1
overcomes breast cancer-associated immunosuppression and prevents
metastatic disease. Cancer Res. 73:1107–1117. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cedeno-Laurent F, Watanabe R, Teague JE,
Kupper TS, Clark RA and Dimitroff CJ: Galectin-1 inhibits the
viability, proliferation, and Th1 cytokine production of
nonmalignant T cells in patients with leukemic cutaneous T-cell
lymphoma. Blood. 119:3534–3538. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hallek M, Cheson BD, Catovsky D,
Caligaris-cappio F, Dighiero G, Döhner H, Hillmen P, Keating MJ,
Montserrat E, Rai KR, et al: Guidelines for the diagnosis and
treatment of chronic lymphocytic leukemia: A report from the
international workshop on chronic lymphocytic leukemia updating the
national cancer institute-Working Group 1996 guidelines. Blood.
111:5446–5456. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hallek M: Chronic lymphocytic leukemia:
2015 update on diagnosis, risk stratification, and treatment. Am J
Hematol. 90:446–460. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Eichhorst B, Robak T, Montserrat E, Ghia
P, Hillmen P, Hallek M and Buske C: ESMO Guidelines Committee:
Chronic lymphocytic leukaemia: ESMO clinical practice guidelines
for diagnosis, treatment and follow-up. Ann Oncol. 26 (Suppl
5):v78–v84. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Croci DO, Morande PE, Dergan-Dylon S,
Borge M, Toscano MA, Stupirski JC, Bezares RF, Avalos JS, Narbaitz
M, Gamberale R, et al: Nurse-like cells control the activity of
chronic lymphocytic leukemia B cells via galectin-1. Leukemia.
27:1413–1416. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kikushige Y, Miyamoto T, Yuda J,
Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, Niiro H, Yurino A,
Miyawaki K, Takenaka K, et al: A TIM-3/Gal-9 autocrine stimulatory
loop drives self-renewal of human myeloid leukemia stem cells and
leukemic progression. Cell Stem Cell. 17:341–352. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Gonçalves Silva I, Yasinska IM, Sakhnevych
SS, Fiedler W, Wellbrock J, Bardelli M, Varani L, Hussain R,
Siligardi G, Ceccone G, et al: The Tim-3-galectin-9 secretory
pathway is involved in the immune escape of human acute myeloid
leukemia cells. EBioMedicine. 22:44–57. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li X, Chen Y, Liu X, Zhang J, He X, Teng G
and Yu D: Tim3/Gal9 interactions between T cells and monocytes
result in an immunosuppressive feedback loop that inhibits Th1
responses in osteosarcoma patients. Int Immunopharmacol.
44:153–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ozkazanc D, Yoyen-Ermis D, Tavukcuoglu E,
Buyukasik Y and Esendagli G: Functional exhaustion of
CD4+ T cells induced by co-stimulatory signals from
myeloid leukaemia cells. Immunology. 149:460–471. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Rittmeyer A, Barlesi F, Waterkamp D, Park
K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols
MC, et al: Atezolizumab versus docetaxel in patients with
previously treated non-small-cell lung cancer (OAK): A phase 3,
open-label, multicentre randomised controlled trial. Lancet.
389:255–265. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Fehrenbacher L, Spira A, Ballinger M,
Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D,
Artal-Cortes A, Lewanski C, et al: Atezolizumab versus docetaxel
for patients with previously treated non-small-cell lung cancer
(POPLAR): A multicentre, open-label, phase 2 randomised controlled
trial. Lancet. 387:1837–1846. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wolchok JD, Chiarion-Sileni V, Gonzalez R,
Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D,
Ferrucci PF, et al: Overall survival with combined nivolumab and
ipilimumab in advanced melanoma. N Engl J Med. 377:1345–1356. 2017.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Herbst RS, Baas P, Kim DW, Felip E,
Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, et al:
Pembrolizumab versus docetaxel for previously treated,
PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010):
A randomised controlled trial. Lancet. 387:1540–1550. 2016.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Reck M, Rodríguez-Abreu D, Robinson AG,
Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe
S, et al: Pembrolizumab versus Chemotherapy for PD-L1-positive
non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Hurtado AM, Chen-Liang TH, Przychodzen B,
Hamedi C, Muñoz-Ballester J, Dienes B, García-Malo MD, Antón AI, de
Arriba F, Teruel-Montoya R, et al: Prognostic signature and
clonality pattern of recurrently mutated genes in inactive chronic
lymphocytic leukemia. Blood Cancer J. 5:e3422015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Sato M, Nishi N, Shoji H, Seki M,
Hashidate T, Hirabayashi J, Kasai Ki K, Hata Y, Suzuki S, Hirashima
M and Nakamura T: Functional analysis of the carbohydrate
recognition domains and a linker peptide of galectin-9 as to
eosinophil chemoattractant activity. Glycobiology. 12:191–197.
2002. View Article : Google Scholar : PubMed/NCBI
|