1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maluccio M and Covey A: Recent progress in
understanding, diagnosing, and treating hepatocellular carcinoma.
CA Cancer J Clin. 62:394–399. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Han W, Fu X, Xie J, Meng Z, Gu Y, Wang X,
Li L, Pan H and Huang W: MiR-26a enhances autophagy to protect
against ethanol-induced acute liver injury. J Mol Med.
93:1045–1055. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Palmer DH, Hussain SA, Smith AJ,
Hargreaves S, Ma YT, Hull D, Johnson PJ and Ross PJ: Sorafenib for
advanced hepatocellular carcinoma (HCC): Impact of rationing in the
United Kingdom. Br J Cancer. 109:888–890. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tanaka Y, Hanada K, Mizokami M, Yeo AE,
Shih JW, Gojobori T and Alter HJ: A comparison of the molecular
clock of hepatitis C virus in the United States and Japan predicts
that hepatocellular carcinoma incidence in the United States will
increase over the next two decades. Proc Natl Acad Sci USA.
99:15584–15589. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Forner A, Hessheimer AJ, Real Isabel M and
Bruix J: Treatment of hepatocellular carcinoma. Crit Rev Oncol
Hematol. 60:89–98. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sherman M: Hepatocellular carcinoma:
Epidemiology, risk factors, and screening, Seminars in liver
disease. Semin Liver Dis. 25:143–154. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Althoff TF and Offermanns S:
G-protein-mediated signaling in vascular smooth muscle
cells-implications for vascular disease. J Mol Med. 93:973–981.
2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Huh YH, Oh S, Yeo YR, Chae IH, Kim SH, Lee
JS, Yun SJ, Choi KY, Ryu JH and Jun CD: Swiprosin-1 stimulates
cancer invasion and metastasis by increasing the Rho family of
GTPase signaling. Oncotarget. 6:13060–13071. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Deryugina EI and Quigley JP: Matrix
metalloproteinases and tumor metastasis. Cancer Metastasis Rev.
25:9–34. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen CK, Yu WH, Cheng TY, Chen MW, Su CY,
Yang YC, Kuo TC, Lin MT, Huang YC, Hsiao M, et al: Inhibition of
VEGF165/VEGFR2-dependent signaling by LECT2 suppresses
hepatocellular carcinoma angiogenesis. Sci Rep. 6:313982016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Lampelj M, Arko D, Cas-Sikosek N, Kavalar
R, Ravnik M, Jezersek-Novakovic B, Dobnik S, Dovnik NF and Takac I:
Urokinase plasminogen activator (uPA) and plasminogen activator
inhibitor type-1 (PAI-1) in breast cancer - correlation with
traditional prognostic factors. Radiol Oncol. 49:357–364. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Guo H, Xing Y, Mu A, Li X, Li T, Bian X,
Yang C, Zhang X, Liu Y and Wang X: Correlations between EGFR gene
polymorphisms and pleural metastasis of lung adenocarcinoma. Onco
Targets Ther. 9:5257–5270. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Etienne-Manneville S and Hall A: Rho
GTPases in cell biology. Nature. 420:629–635. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vega FM and Ridley AJ: Rho GTPases in
cancer cell biology. FEBS Lett. 582:2093–2101. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Haga RB and Ridley AJ: Rho GTPases:
Regulation and roles in cancer cell biology. Small GTPases.
7:207–221. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wong CC, Wong CM, Au SL and Ng IO:
RhoGTPases and Rho-effectors in hepatocellular carcinoma
metastasis: ROCK N' Rho move it. Liver Int. 30:642–656. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Grise F, Bidaud A and Moreau V: Rho
GTPases in hepatocellular carcinoma. Biochim Biophys Acta.
1795:137–151. 2009.PubMed/NCBI
|
19
|
Kandpal RP: Rho GTPase activating proteins
in cancer phenotypes. Curr Protein Pept Sci. 7:355–365. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Furukawa Y, Kawasoe T, Daigo Y, Nishiwaki
T, Ishiguro H, Takahashi M, Kitayama J and Nakamura Y: Isolation of
a novel human gene, ARHGAP9, encoding a rho-GTPase activating
protein. Biochem Biophys Res Commun. 284:643–649. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ang BK, Lim CY, Koh SS, Sivakumar N, Taib
S, Lim KB, Ahmed S, Rajagopal G and Ong SH: ArhGAP9, a novel MAP
kinase docking protein, inhibits Erk and p38 activation through WW
domain binding. J Mol Signal. 2:12007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Takefuji M, Asano H, Mori K, Amano M, Kato
K, Watanabe T, Morita Y, Katsumi A, Itoh T, Takenawa T, et al:
Mutation of ARHGAP9 in patients with coronary spastic angina. J Hum
Genet. 55:42–49. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Katoh M and Katoh M: Identification and
characterization of ARHGAP24 and ARHGAP25 genes in silico. Int J
Mol Med. 14:333–338. 2004.PubMed/NCBI
|
24
|
Kim YJ, Choi WI, Jeon BN, Choi KC, Kim K,
Kim TJ, Ham J, Jang HJ, Kang KS and Ko H: Stereospecific effects of
ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelial-mesenchymal
transition and suppresses lung cancer migration, invasion and
anoikis resistance. Toxicology. 322:23–33. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tian L, Shen D, Li X, Shan X, Wang X, Yan
Q and Liu J: Ginsenoside Rg3 inhibits epithelial-mesenchymal
transition (EMT) and invasion of lung cancer by down-regulating
FUT4. Oncotarget. 7:1619–1632. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Junmin S, Hongxiang L, Zhen L, Chao Y and
Chaojie W: Ginsenoside Rg3 inhibits colon cancer cell migration by
suppressing nuclear factor kappa B activity. J Tradit Chin Med.
35:440–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu TM, Cui MH, Xin Y, Gu LP, Jiang X, Su
MM, Wang DD and Wang WJ: Inhibitory effect of ginsenoside Rg3 on
ovarian cancer metastasis. Chin Med J (Engl). 121:1394–1397.
2008.PubMed/NCBI
|
28
|
Chen QJ, Zhang MZ and Wang LX: Gensenoside
Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells.
Cell Physiol Biochem. 26:849–858. 2011. View Article : Google Scholar
|
29
|
Lee YS, Kang YS, Lee SH and Kim JA: Role
of NAD(P)H oxidase in the tamoxifen-induced generation of reactive
oxygen species and apoptosis in HepG2 human hepatoblastoma cells.
Cell Death Differ. 7:925–932. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang QH, Wu CF, Duan L and Yang JY:
Protective effects of ginsenoside Rg(3) against
cyclosphosphamide-induced DNA damage and cell apoptosisin mice.
Arch Toxicol. 82:117–123. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim JH: Pharmacological and medical
applications of Panax ginseng and ginsenosides: A review for use in
cardiovascular diseases. J Ginseng Res. 42:264–269. 2018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Lü JM, Yao Q and Chen C: Ginseng
compounds: an update on their molecular mechanisms and medical
applications. Curr Vasc Pharmacol. 7:293–302. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang JY, Sun Y, Fan QX and Zhang YQ:
Efficacy of Shenyi Capsule combined with gemcitabine plus cisplatin
in treatment of advanced esophageal cancer: A randomized controlled
trial. Zhong Xi Yi Jie He Xue Bao. 7:1047–1051. 2009.(In Chinese).
View Article : Google Scholar : PubMed/NCBI
|
34
|
Forner A, Llovet JM and Bruix J:
Hepatocellularcarcinoma. Lancet. 379:1245–1255. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun Y, Lin H, Zhu Y, Feng J, Chen Z, Li G,
Zhang X, Zhang Z, Tang J, Shi M, Hao X and Han H: A randomized,
prospective, multi-centre clinical trial of NP regimen
(vinorelbine+cisplatin) plus Gensing Rg3 in the treatment of
advanced non-small cell lung cancer patients. Zhongguo Fei Ai Za
Zhi. 9:254–258. 2006.(In Chinese). PubMed/NCBI
|
36
|
Jiang JW, Chen XM, Chen XH and Zheng SS:
Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via
intrinsic apoptotic pathway. World J Gastroenterol. 17:3605–3613.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shan X, Aziz F, Tian LL, Wang XQ, Yan Q
and Liu JW: Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation
inhibits melanoma cell proliferation by decreasing FUT4/LeY
expression. Int J Oncol. 46:1667–1676. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Shan X, Fu YS, Aziz F, Wang XQ, Yan Q and
Liu JW: Ginsenoside Rg3 inhibits melanoma cell proliferation
through down-regulation of histone deacetylase 3 (HDAC3) and
increase of p53 acetylation. PLoS One. 9:e1154012014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kim SM, Lee SY, Cho JS, Son SM, Choi SS,
Yun YP, Yoo HS, Yoon DY, Oh KW, Han SB and Hong JT: Combination of
ginsenoside Rg3 with docetaxel enhances the susceptibility of
prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol.
631:1–9. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang X, Chen L, Wang T, Jiang X, Zhang H,
Li P, Lv B and Gao X: Ginsenoside Rg3 antagonizes
adriamycin-induced cardiotoxicity by improving endothelial
dysfunction from oxidative stress via upregulating the Nrf2-ARE
pathway through the activation of akt. Phytomedicine. 22:875–884.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Park D, Bae DK, Jeon JH, Lee J, Oh N, Yang
G, Yang YH, Kim TK, Song J, Lee SH, et al: Immunopotentiation and
antitumor effects of a ginsenoside Rg(3)-fortified red ginseng
preparation in mice bearing H460 lung cancer cells. Environ Toxicol
Pharmacol. 31:397–405. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Amin E, Jaiswal M, Derewenda U, Reis K,
Nouri K, Koessmeier KT, Aspenström P, Somlyo AV, Dvorsky R and
Ahmadian MR: Deciphering the molecular and functional Basis of
RHOGAP family proteins A systematic approach toward selective
inactivation of rho family proteINS. J Biol Chem. 291:20353–20371.
2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Tripathi BK, Qian X, Mertins P, Wang D,
Papageorge AG, Carr SA and Lowy DR: CDK5 is a major regulator of
the tumor suppressor DLC1. J Cell Biol. 207:627–642. 2014.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Katoh Y and Katoh M: Identification and
characterization of ARHGAP27 gene in silico. Int J Mol Med.
14:943–947. 2004.PubMed/NCBI
|
45
|
Guo F, Liu Y, Huang J, Li Y, Zhou G, Wang
D, Li Y, Wang J, Xie P and Li G: Identification of Rho GTPase
activating protein 6 isoform 1 variant as a new molecular marker in
human colorectal tumors. Pathol Oncol Res. 16:319–326. 2010.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Li J, Liu Y and Yin Y: Inhibitory effects
of Arhgap6 on cervical carcinoma cells. Tumour Biol. 37:1411–1425.
2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Luo N, Guo J, Chen L, Yang W, Qu X and
Cheng Z: ARHGAP10, downregulated in ovarian cancer, suppresses
tumorigenicity of ovarian cancer cells. Cell Death Dis.
7:e21572016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Saito K, Ozawa Y, Hibino K and Ohta Y:
FilGAP, a Rho/Rho-associated protein kinase-regulated
GTPase-activating protein for Rac, controls tumor cell migration.
Mol Biol Cell. 23:4739–4750. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Xu G, Lu X, Huang T and Fan J: ARHGAP24
inhibits cell cycle progression, induces apoptosis and suppresses
invasion in renal cell carcinoma. Oncotarget. 7:51829–51839;.
2016.PubMed/NCBI
|
50
|
Nishi T, Takahashi H, Hashimura M, Yoshida
T, Ohta Y and Saegusa M: FilGAP, a Rac-specific Rho
GTPase-activating protein, is a novel prognostic factor for
follicular lymphoma. Cancer Med. 4:808–818. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Xu J, Zhou X, Wang J, Li Z, Kong X, Qian
J, Hu Y and Fang JY: RhoGAPs attenuate cell proliferation by direct
interaction with p53 tetramerization domain. Cell Rep. 3:1526–1538.
2013. View Article : Google Scholar : PubMed/NCBI
|