SUN2: A potential therapeutic target in cancer (Review)
- Authors:
- Xin Chen
- Yu Chen
- Hui‑Min Huang
- Hai‑Di Li
- Fang‑Tian Bu
- Xue‑Yin Pan
- Yang Yang
- Wan‑Xia Li
- Xiao‑Feng Li
- Cheng Huang
- Xiao‑Ming Meng
- Jun Li
-
Affiliations: School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Pharmacy, Anqing Municipal Hospital, Anqing, Anhui 246003, P.R. China - Published online on: November 27, 2018 https://doi.org/10.3892/ol.2018.9764
- Pages: 1401-1408
-
Copyright : © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Lobo NA, Shimono Y, Qian D and Clarke MF: The biology of cancer stem cells. Annu Rev Cell Dev Biol. 23:675–699. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, Lin SX, Wang L, Chen HH, Xu X, et al: MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer. 13:1862014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li Z, Wu L, Wang Z, Wang X, Yu Y, Zhao Q and Luo F: MiRNA-125a-5p: A regulator and predictor of gefitinib's effect on nasopharyngeal carcinoma. Cancer Cell Int. 14:242014. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Lv XB, Wang XP, Sang Y, Xu S, Hu K, Wu M, Liang Y, Liu P, Tang J, et al: MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle. 11:2495–2506. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qi X, Li J, Zhou C, Lv C and Tian M: MicroRNA-320a inhibits cell proliferation, migration and invasion by targeting BMI-1 in nasopharyngeal carcinoma. FEBS Lett. 588:3732–3738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheung CC, Chung GT, Lun SW, To KF, Choy KW, Lau KM, Siu SP, Guan XY, Ngan RK, Yip TT, et al: miR-31 is consistently inactivated in EBV-associated nasopharyngeal carcinoma and contributes to its tumorigenesis. Mol Cancer. 13:1842014. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yu X, Xie J, Zhan M, Yu Z, Xie L, Zeng H, Zhang F, Chen G, Yi X and Zheng J: ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget. 6:21004–21015. 2015.PubMed/NCBI | |
Wang J, Tian X, Han R, Zhang X, Wang X, Shen H, Xue L, Liu Y, Yan X, Shen J, et al: Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene. 33:1181–1189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hecht I, Natan S, Zaritsky A, Levine H, Tsarfaty I and Ben-Jacob E: The motility-proliferation-metabolism interplay during metastatic invasion. Sci Rep. 5:135382015. View Article : Google Scholar : PubMed/NCBI | |
Hsieh TH, Chien CL, Lee YH, Lin CI, Hsieh JY, Chao ME, Liu DJ, Chu SS, Chen W, Lin SC, et al: Downregulation of SUN2, a novel tumor suppressor, mediates miR-221/222-induced malignancy in central nervous system embryonal tumors. Carcinogenesis. 35:2164–2174. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto A, Hieda M, Yokoyama Y, Nishioka Y, Yoshidome K, Tsujimoto M and Matsuura N: Global loss of a nuclear lamina component, lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer. Cancer Med. 4:1547–1557. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lv XB, Liu L, Cheng C, Yu B, Xiong L, Hu K, Tang J, Zeng L and Sang Y: SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep. 5:179402015. View Article : Google Scholar : PubMed/NCBI | |
Meinke P, Nguyen TD and Wehnert MS: The LINC complex and human disease. Biochem Soc Trans. 39:1693–1697. 2011. View Article : Google Scholar : PubMed/NCBI | |
Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, Hodzic D and Wirtz D: A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci USA. 106:19017–19022. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhu WG and Xu X: Ubiquitin-like modifications in the DNA damage response. Mutat Res. 803–805. 56–75. 2017. | |
Lei K, Zhu X, Xu R, Shao C, Xu T, Zhuang Y and Han M: Inner nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage response. Curr Biol. 22:1609–1615. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Du X, Cai Z and Greene MI: Characterization of the structures involved in localization of the SUN proteins to the nuclear envelope and the centrosome. DNA Cell Biol. 25:554–562. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hodzic DM, Yeater DB, Bengtsson L, Otto H and Stahl PD: Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem. 279:25805–25812. 2004. View Article : Google Scholar : PubMed/NCBI | |
Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R and Karakesisoglou I: The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Scie. 118:3419–3430. 2005. View Article : Google Scholar | |
Dreger M, Bengtsson L, Schöneberg T, Otto H and Hucho F: Nuclear envelope proteomics: Novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci USA. 98:11943–11948. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kennedy C, Sebire K, de Kretser DM and O'Bryan MK: Human sperm associated antigen 4 (SPAG4) is a potential cancer marker. Cell Tissue Res. 315:279–283. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tzur YB, Wilson KL and Gruenbaum Y: SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol. 7:782–788. 2006. View Article : Google Scholar : PubMed/NCBI | |
Starr DA and Fischer JA: KASH'n Karry: The KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays. 27:1136–1146. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hagan I and Yanagida M: The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol. 129:1033–1047. 1995. View Article : Google Scholar : PubMed/NCBI | |
Malone CJ, Fixsen WD, Horvitz HR and Han M: UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development. 126:3171–3181. 1999.PubMed/NCBI | |
Zhou Z, Du X, Cai Z, Song X, Zhang H, Mizuno T, Suzuki E, Yee MR, Berezov A, Murali R, et al: Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J Biol Chem. 287:5317–5326. 2012. View Article : Google Scholar : PubMed/NCBI | |
Starr DA and Fridolfsson HN: Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol. 26:421–444. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stewart-Hutchinson PJ, Hale CM, Wirtz D and Hodzic D: Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res. 314:1892–1905. 2008. View Article : Google Scholar : PubMed/NCBI | |
Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD and Hodzic D: Coupling of the nucleus and cytoplasm: Role of the LINC complex. J Cell Biol. 172:41–53. 2006. View Article : Google Scholar : PubMed/NCBI | |
Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC and Shackleton S: SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol. 26:3738–3751. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schmitt J, Benavente R, Hodzic D, Höög C, Stewart CL and Alsheimer M: Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc Natl Acad Sci USA. 104:7426–7431. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee KK, Starr D, Cohen M, Liu J, Han M, Wilson KL and Gruenbaum Y: Lamin-dependent localization of UNC-84, a protein required for nuclear migration in Caenorhabditis elegans. Mol Biol Cell. 13:892–901. 2002. View Article : Google Scholar : PubMed/NCBI | |
Starr DA and Han M: ANChors away: An actin based mechanism of nuclear positioning. J Cell Scie. 116:211–216. 2003. View Article : Google Scholar | |
Ostlund C, Folker ES, Choi JC, Gomes ER, Gundersen GG and Worman HJ: Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J Cell Sci. 122:4099–4108. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chistiakov DA, Sobenin IA, Orekhov AN and Bobryshev YV: Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int. 2015:3545172015. View Article : Google Scholar : PubMed/NCBI | |
Song J, Ouyang Y, Che J, Li X, Zhao Y, Yang K, Zhao X, Chen Y, Fan C and Yuan W: Potential value of miR-221/222 as diagnostic, prognostic and therapeutic biomarkers for diseases. Front Immunol. 8:562017. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Wu L, Weng D, Xu D, Geng J and Zhao F: Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J Exp Clin Cancer Res. 28:82009. View Article : Google Scholar : PubMed/NCBI | |
Broers JL, Raymond Y, Rot MK, Kuijpers H, Wagenaar SS and Ramaekers FC: Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am J Pathol. 143:211–220. 1993.PubMed/NCBI | |
Stadelmann B, Khandjian E, Hirt A, Lüthy A, Weil R and Wagner HP: Repression of nuclear lamin A and C gene expression in human acute lymphoblastic leukemia and non-Hodgkin's lymphoma cells. Leuk Res. 14:815–821. 1990. View Article : Google Scholar : PubMed/NCBI | |
Agrelo R, Setien F, Espada J, Artiga MJ, Rodriguez M, Pérez-Rosado A, Sanchez-Aguilera A, Fraga MF, Piris MA and Esteller M: Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J Clin Oncol. 23:3940–3947. 2005. View Article : Google Scholar : PubMed/NCBI | |
Willis ND, Cox TR, Rahman-Casañs SF, Smits K, Przyborski SA, van den Brandt P, van Engeland M, Weijenberg M, Wilson RG, de Bruïne A and Hutchison CJ: Lamin A/C is a risk biomarker in colorectal cancer. PLoS One. 3:e29882008. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Schäfer G, Bu H, Zhang Y and Klocker H: Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway. Carcinogenesis. 33:751–759. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tilli CM, Ramaekers FC, Broers JL, Hutchison CJ and Neumann HA: Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br J Dermatol. 148:102–109. 2003. View Article : Google Scholar : PubMed/NCBI | |
Venables RS, McLean S, Luny D, Moteleb E, Morley S, Quinlan RA, Lane EB and Hutchison CJ: Expression of individual lamins in basal cell carcinomas of the skin. Br J Cancer. 84:512–519. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ellenbroek SI and van Rheenen J: Imaging hallmarks of cancer in living mice. Nat Rev Cancer. 14:406–418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M and Bonner WM: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 10:886–895. 2000. View Article : Google Scholar : PubMed/NCBI | |
Harper JW and Elledge SJ: The DNA damage response: Ten years after. Mol Cell. 28:739–745. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sobol RW, Horton JK, Kühn R, Gu H, Singhal RK, Prasad R, Rajewsky K and Wilson SH: Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature. 379:183–186. 1996. View Article : Google Scholar : PubMed/NCBI | |
Majidinia M and Yousefi B: DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst). 54:22–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R and Han M: SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron. 64:173–187. 2009. View Article : Google Scholar : PubMed/NCBI | |
Davidson D, Amrein L, Panasci L and Aloyz R: Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond. Front Pharmacol. 4:52013. View Article : Google Scholar : PubMed/NCBI | |
Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O'Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T, et al: miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 4:pt52011. View Article : Google Scholar : PubMed/NCBI | |
Hwang MS, Yu N, Stinson SY, Yue P, Newman RJ, Allan BB and Dornan D: miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One. 8:e665022013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liang C, Ma H, Zhao Q, Lu Y, Xiang Z, Li L, Qin J, Chen Y, Cho WC, et al: miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cance. Molecules. 19:7122–7137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gan R, Yang Y, Yang X, Zhao L, Lu J and Meng QH: Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther. 21:290–296. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pichiorri F, Palmieri D, De Luca L, Consiglio J, You J, Rocci A, Talabere T, Piovan C, Lagana A, Cascione L, et al: In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med. 210:951–968. 2013. View Article : Google Scholar : PubMed/NCBI | |
Falkenberg N, Anastasov N, Rappl K, Braselmann H, Auer G, Walch A, Huber M, Höfig I, Schmitt M, Höfler H, et al: MiR-221/-222 differentiate prognostic groups in advanced breast cancers and influence cell invasion. Br J Cancer. 109:2714–2723. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L and Negrini M: MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 15:5073–5081. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bae HJ, Jung KH, Eun JW, Shen Q, Kim HS, Park SJ, Shin WC, Yang HD, Park WS, Lee JY and Nam SW: MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer. J Hepatol. 63:408–419. 2015. View Article : Google Scholar : PubMed/NCBI | |
Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F, Giacomelli L, D'Abundo L, Ferracin M, Bassi C, et al: Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology. 56:1025–1033. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang Y, Yu W, Chen J and Luo J: Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun. 406:70–73. 2011. View Article : Google Scholar : PubMed/NCBI | |
Duan M, Yao H, Hu G, Chen X, Lund AK and Buch S: HIV Tat induces expression of ICAM-1 in HUVECs: implications for miR-221/-222 in HIV-associated cardiomyopathy. PLoS One. 8:e601702013. View Article : Google Scholar : PubMed/NCBI | |
Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, Philip PA and Li Y: Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am J Cancer Res. 3:465–477. 2013.PubMed/NCBI | |
Passadouro M, Pedroso de Lima MC and Faneca H: MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int J Nanomedicine. 9:3203–3217. 2014.PubMed/NCBI | |
Tanaka R, Tomosugi M, Horinaka M, Sowa Y and Sakai T: Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL sensitivity through DR5 Up-regulation in pancreatic cancer cells. PLoS One. 10:e01257792015. View Article : Google Scholar : PubMed/NCBI | |
Lee C, He H, Jiang Y, Di Y, Yang F, Li J, Jin C and Fu D: Elevated expression of tumor miR-222 in pancreatic cancer is associated with Ki67 and poor prognosis. Med Oncol. 30:7002013. View Article : Google Scholar : PubMed/NCBI | |
Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, Yang HK and Kim VN: Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 37:1672–1681. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Song N, Yao H, Zhao L, Liu H and Li G: miR-221 and miR-222 simultaneously target RECK and regulate growth and invasion of gastric cancer cells. Med Sci Monit. 21:2718–2725. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z and Chun-Sheng K: MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 10:3672010. View Article : Google Scholar : PubMed/NCBI | |
Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, Yuasa Y, Kang D, Kim YS and You WC: Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS One. 7:e336082012. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Qian F, Yang X, Jiang H, Chen Y and Liu S: Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer. Med Oncol. 31:1642014. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Wang W, Zeng JJ, Wu CT, Lei ST and Li GX: MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta Pharmacol Sin. 32:375–384. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qin J and Luo M: MicroRNA-221 promotes colorectal cancer cell invasion and metastasis by targeting RECK. FEBS Lett. 588:99–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y, Liu Z, Cao X, Chen P, Liu Z, et al: A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells. Gastroenterology. 147:847–859, e811. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xue Q, Sun K, Deng HJ, Lei ST, Dong JQ and Li GX: Anti-miRNA-221 sensitizes human colorectal carcinoma cells to radiation by upregulating PTEN. World J Gastroenterol. 19:9307–9317. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, Ling S, Jiang L, Tian Y and Lin TY: Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 25:1674–1680. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhang J, Hao J, Shi Z, Wang Y, Han L, Yu S, You Y, Jiang T, Wang J, et al: High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med. 10:1192012. View Article : Google Scholar : PubMed/NCBI | |
Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM and Stein GS: MicroRNAs 221 and 22χ2 bypass quiescence and compromise cell survival. Cancer Res. 68:2773–2780. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L and Jiang H: Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol. 34:1653–1660. 2009.PubMed/NCBI | |
Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, et al: MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 9:2292010. View Article : Google Scholar : PubMed/NCBI | |
Quintavalle C, Garofalo M, Zanca C, Romano G, Iaboni M, del Basso De Caro M, Martinez-Montero JC, Incoronato M, Nuovo G, Croce CM and Condorelli G: miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPµ. Oncogene. 31:858–868. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang J, Han L, Zhang A, Zhang C, Zheng Y, Jiang T, Pu P, Jiang C and Kang C: Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep. 27:854–860. 2012.PubMed/NCBI | |
Li W, Guo F, Wang P, Hong S and Zhang C: miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr Mol Med. 14:185–195. 2014. View Article : Google Scholar : PubMed/NCBI | |
Di Martino MT, Gullà A, Cantafio ME, Lionetti M, Leone E, Amodio N, Guzzi PH, Foresta U, Conforti F, Cannataro M, et al: In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget. 4:242–255. 2013. View Article : Google Scholar : PubMed/NCBI | |
Di Martino MT, Gullà A, Gallo Cantafio ME, Altomare E, Amodio N, Leone E, Morelli E, Lio SG, Caracciolo D, Rossi M, et al: In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells. PLoS One. 9:e896592014. View Article : Google Scholar : PubMed/NCBI | |
Gullà A, Di Martino MT, Gallo Cantafio ME, Morelli E, Amodio N, Botta C, Pitari MR, Lio SG, Britti D, Stamato MA, et al: A 13 mer LNA-i-miR-221 inhibitor restores drug sensitivity in melphalan-refractory multiple myeloma cells. Clin Cancer Res. 22:1222–1233. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang JJ, Yu J, Li JY, Liu YT and Zhong RQ: Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol. 29:2402–2408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kanemaru H, Fukushima S, Yamashita J, Honda N, Oyama R, Kakimoto A, Masuguchi S, Ishihara T, Inoue Y, Jinnin M and Ihn H: The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci. 61:187–193. 2011. View Article : Google Scholar : PubMed/NCBI | |
Felicetti F, De Feo A, Coscia C, Puglisi R, Pedini F, Pasquini L, Bellenghi M, Errico MC, Pagani E and Carè A: Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med. 14:562016. View Article : Google Scholar : PubMed/NCBI | |
Alamolhodaei NS, Behravan J, Mosaffa F and Karimi G: MiR 221/222 as new players in tamoxifen resistance. Curr Pharm Des. 22:6946–6955. 2016. View Article : Google Scholar : PubMed/NCBI | |
Linher-Melville K and Singh G: The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol. 451:40–52. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li F, He X, Ye D, Lin Y, Yu H, Yao C, Huang L, Zhang J, Wang F, Xu S, et al: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol Cell. 60:661–675. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lai CC, Lin PM, Lin SF, Hsu CH, Lin HC, Hu ML, Hsu CM and Yang MY: Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 34:1847–1854. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Kwak Y, Kim ND and Sim T: Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations. Cancer Biol Ther. 17:65–78. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiangyun Y, Xiaomin N, Linping G, Yunhua X, Ziming L, Yongfeng Y, Zhiwei C and Shun L: Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget. 8:6984–6993. 2017. View Article : Google Scholar : PubMed/NCBI | |
Osborne B, Bentley NL, Montgomery MK and Turner N: The role of mitochondrial sirtuins in health and disease. Free Radic Biol Med. 100:164–174. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Zuo Y, Feng Y and Zhang M: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol. 35:10699–10705. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kyrylenko S, Kyrylenko O, Suuronen T and Salminen A: Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell Mol Life Sci. 60:1990–1997. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ding S, Khoury-Hanold W, Iwasaki A and Robek MD: Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth. PLoS Biol. 12:e10017582014. View Article : Google Scholar : PubMed/NCBI | |
Vanhaecke T, Papeleu P, Elaut G and Rogiers V: Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr Med Chem. 11:1629–1643. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Liotta LA and Petricoin EF: The Warburg effect and mass spectrometry-based proteomic analysis. Cancer Genomics Proteomics. 14:211–218. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sica A, Strauss L, Consonni FM, Travelli C, Genazzani A and Porta C: Metabolic regulation of suppressive myeloid cells in cancer. Cytokine Growth Factor Rev. 35:27–35. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cairns RA: Drivers of the Warburg phenotype. Cancer J. 21:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
He X, Li C, Ke R, Luo L and Huang D: Down-regulation of adenosine monophosphate-activated protein kinase activity: A driver of cancer. Tumour Biol. 39:10104283176975762017. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC and Lu Z: ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 14:1295–1304. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang C, Wu R, Lin M, Liang Y, Liu J, Wang X, Yang B and Feng Z: RRAD inhibits the Warburg effect through negative regulation of the NF-κB signaling. Oncotarget. 6:14982–14992. 2015.PubMed/NCBI | |
Dueregger A, Schöpf B, Eder T, Höfer J, Gnaiger E, Aufinger A, Kenner L, Perktold B, Ramoner R, Klocker H and Eder IE: Differential utilization of dietary fatty acids in benign and malignant cells of the prostate. PLoS One. 10:e01357042015. View Article : Google Scholar : PubMed/NCBI | |
He JX, Yang CH and Miao ZH: Poly(ADP-ribose) polymerase inhibitors as promising cancer therapeutics. Acta Pharmacol Sin. 31:1172–1180. 2010. View Article : Google Scholar : PubMed/NCBI | |
Livraghi L and Garber JE: PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 13:1882015. View Article : Google Scholar : PubMed/NCBI | |
Evans T and Matulonis U: PARP inhibitors in ovarian cancer: Evidence, experience and clinical potential. Ther Adv Med Oncol. 9:253–267. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rajawat J, Shukla N and Mishra DP: Therapeutic targeting of poly(ADP-Ribose) polymerase-1 (PARP1) in cancer: Current developments, therapeutic strategies, and future opportunities. Med Res Rev. 37:1461–1491. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vici P, Mariani L, Pizzuti L, Sergi D, Di Lauro L, Vizza E, Tomao F, Tomao S, Mancini E, Vincenzoni C, et al: Emerging biological treatments for uterine cervical carcinoma. J Cancer. 5:86–97. 2014. View Article : Google Scholar : PubMed/NCBI |