Open Access

Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer

  • Authors:
    • Chunsheng Li
    • Changyong E
    • Yangyang Zhou
    • Wei Yu
  • View Affiliations

  • Published online on: February 28, 2019     https://doi.org/10.3892/ol.2019.10087
  • Pages: 4494-4504
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to investigate candidate genes for chemoradiotherapy (CRT) sensitivity in patients with locally advanced rectal cancer (LARC), and the potential mechanisms of their action. A microarray dataset (GSE98959) was obtained from the Gene Expression Omnibus database that included microRNA (miRNA, miR) expression profiling of 22 samples from patients with LARC who had received preoperative radiotherapy and chemotherapy. Of these patients, 10 responded to the treatment and 12 did not. Differentially expressed miRNAs (DEMs) were identified, followed by the construction of an miRNA‑gene network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) function analyses were performed on the target genes in the miRNA‑gene network. Furthermore, a protein‑protein interaction (PPI) network was constructed on the basis of the target genes, followed by GO function enrichment and KEGG pathway analysis. A total of 30 DEMs were identified between the responder and non‑responder groups. Thiamine metabolism (including miR‑371a‑3p) was the pathway with the highest enrichment of DEMs. The pathway that was most markedly enriched in the target genes of upregulated miRNAs was the pluripotency of stem cells pathway, as indicated by phosphoinositide‑4,5‑bisphosphate 3‑kinase γ (PIK3CG) and anaphase‑promoting complex subunit 2 (APC2). Pathways in cancer exhibited the highest enrichment in the set of target genes of downregulated miRNAs. KEGG pathway and GO function analysis indicated that target genes in the PPI network were enriched in the glioma pathway and assembled in the intracellular signaling cascade function, as indicated by the proto‑oncogene NRAS. miR‑371a‑3p may be a candidate miRNA for CRT sensitivity in LARC via the thiamine metabolism pathway. PIK3CG and APC2 may contribute to CRT sensitivity via signaling pathways regulating the pluripotency of stem cells. Furthermore, NRAS may serve an important role in mediating CRT sensitivity via an intracellular signaling cascade.
View Figures
View References

Related Articles

Journal Cover

May-2019
Volume 17 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li C, E C, Zhou Y and Yu W: Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer. Oncol Lett 17: 4494-4504, 2019.
APA
Li, C., E, C., Zhou, Y., & Yu, W. (2019). Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer. Oncology Letters, 17, 4494-4504. https://doi.org/10.3892/ol.2019.10087
MLA
Li, C., E, C., Zhou, Y., Yu, W."Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer". Oncology Letters 17.5 (2019): 4494-4504.
Chicago
Li, C., E, C., Zhou, Y., Yu, W."Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer". Oncology Letters 17, no. 5 (2019): 4494-4504. https://doi.org/10.3892/ol.2019.10087