1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clinicians. 65:87–108. 2015. View Article : Google Scholar
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Waller LP, Deshpande V and Pyrsopoulos N:
Hepatocellular carcinoma: A comprehensive review. World J Hepatol.
7:2648–2663. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Waghray A, Murali AR and Menon KN:
Hepatocellular carcinoma: From diagnosis to treatment. World J
Hepatol. 7:1020–1029. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gao ZF, Wu YN, Bai ZT, Zhang L, Zhou Q and
Li X: Tumor-suppressive role of HACE1 in hepatocellular carcinoma
and its clinical significance. Oncol Rep. 36:3427–3435. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Villanueva A, Minguez B, Forner A, Reig M
and Llovet JM: Hepatocellular carcinoma: Novel molecular approaches
for diagnosis, prognosis, and therapy. Annu Rev Med. 61:317–328.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Anglesio MS, Evdokimova V, Melnyk N, Zhang
L, Fernandez CV, Grundy PE, Leach S, Marra MA, Brooks-Wilson AR,
Penninger J and Sorensen PH: Differential expression of a novel
ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic
Wilms' tumor versus normal kidney. Hum Mol Genet. 13:2061–2074.
2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Goka ET and Lippman ME: Loss of the E3
ubiquitin ligase HACE1 results in enhanced Rac1 signaling
contributing to breast cancer progression. Oncogene. 34:5395–5405.
2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hibi K, Sakata M, Sakuraba K, Shirahata A,
Goto T, Mizukami H, Saito M, Ishibashi K, Kigawa G, Nemoto H and
Sanada Y: Aberrant methylation of the HACE1 gene is frequently
detected in advanced colorectal cancer. Anticancer Res.
28:1581–1584. 2008.PubMed/NCBI
|
10
|
Liu Z, Chen P, Gao H, Gu Y, Yang J, Peng
H, Xu X, Wang H, Yang M, Liu X, et al: Ubiquitylation of autophagy
receptor optineurin by HACE1 activates selective autophagy for
tumor suppression. Cancer Cell. 26:106–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen YL, Li DP, Jiang HY, Yang Y, Xu LL,
Zhang SC and Gao H: Overexpression of HACE1 in gastric cancer
inhibits tumor aggressiveness by impeding cell proliferation and
migration. Cancer Med. 7:2472–2484. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huang Y, de Reynies A, de Leval L, Ghazi
B, Martin-Garcia N, Travert M, Bosq J, Brière J, Petit B, Thomas E,
et al: Gene expression profiling identifies emerging oncogenic
pathways operating in extranodal NK/T-cell lymphoma, nasal type.
Blood. 115:1226–1237. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Robertson KD: DNA methylation and human
disease. Nature reviews. Genetics. 6:597–610. 2005.PubMed/NCBI
|
14
|
Sakata M, Kitamura YH, Sakuraba K, Goto T,
Mizukami H, Saito M, Ishibashi K, Kigawa G, Nemoto H, Sanada Y and
Hibi K: Methylation of HACE1 in gastric carcinoma. Anticancer Res.
29:2231–2233. 2009.PubMed/NCBI
|
15
|
Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W,
Ruan K, Wang F, Xu GL and Hu R: A CRISPR-based approach for
targeted DNA demethylation. Cell Discov. 2:160092016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Morita S, Noguchi H, Horii T, Nakabayashi
K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K
and Hatada I: Targeted DNA demethylation in vivo using
dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat
Biotechnol. 34:1060–1065. 2016. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Liu XS, Wu H, Krzisch M, Wu X, Graef J,
Muffat J, Hnisz D, Li CH, Yuan B, Xu C, et al: Rescue of fragile X
syndrome neurons by DNA methylation editing of the FMR1 gene. Cell.
172:979–992 e976. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xu X, Li C, Gao X, Xia K, Guo H, Li Y, Hao
Z, Zhang L, Gao D, Xu C, et al: Excessive UBE3A dosage impairs
retinoic acid signaling and synaptic plasticity in autism spectrum
disorders. Cell Res. 28:48–68. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smith-Ravin J, England J, Talbot IC and
Bodmer W: Detection of c-Ki-ras mutations in faecal samples from
sporadic colorectal cancer patients. Gut. 36:81–86. 1995.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Mettouchi A and Lemichez E: Ubiquitylation
of active Rac1 by the E3 ubiquitin-ligase HACE1. Small GTPases.
3:102–106. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gacon G, Mettouchi A and Lemichez E: The
tumor suppressor HACE1 targets Rac1 to ubiquitin-mediated
proteasomal degradation. Med Sci (Paris). 28:39–41. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lachance V, Degrandmaison J, Marois S,
Robitaille M, Génier S, Nadeau S, Angers S and Parent JL:
Ubiquitylation and activation of a Rab GTPase is promoted by a
beta(2)AR-HACE1 complex. J Cell Sci. 127:111–123. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
El-Hachem N, Habel N, Naiken T, Bzioueche
H, Cheli Y, Beranger GE, Jaune E, Rouaud F, Nottet N, Reinier F, et
al: Uncovering and deciphering the pro-invasive role of HACE1 in
melanoma cells. Cell Death Differ. 25:2010–2022. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cetinbas N, Daugaard M, Mullen AR, Hajee
S, Rotblat B, Lopez A, Li A, De Berardinis RJ and Sorensen PH: Loss
of the tumor suppressor Hace1 leads to ROS-dependent glutamine
addiction. Oncogene. 34:4005–4010. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tortola L, Nitsch R, Bertrand MJM, Kogler
M, Redouane Y, Kozieradzki I, Uribesalgo I, Fennell LM, Daugaard M,
Klug H, et al: The tumor suppressor hace1 is a critical regulator
of TNFR1-mediated cell fate. Cell Rep. 16:34142016. View Article : Google Scholar : PubMed/NCBI
|