1
|
Ellison D, Love S, Chimelli L, Harding BN,
Lowe JS, Vinter HV, Brandner S and Yong WH: Neuropathology. A
reference text of CNS pathology. 3rd. Edinburgh: Elsevier/Mosby;
2013
|
2
|
Seidu RA, Wu M, Su Z and Xu H: Paradoxical
role of high mobility group box 1 in glioma: A suppressor or a
promoter? Oncol Rev. 11:3252017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Osman MA: Phase II trial of temozolomide
and reirradiation using conformal 3D-radiotherapy in recurrent
brain gliomas. Ann Transl Med. 2:442014.PubMed/NCBI
|
4
|
He J, Shan Z, Li L, Liu F, Liu Z, Song M
and Zhu H: Expression of glioma stem cell marker CD133 and
O6-methylguanine-DNA methyltransferase is associated with
resistance to radiotherapy in gliomas. Oncol Rep. 26:1305–1313.
2011.PubMed/NCBI
|
5
|
Short SC, Giampieri S, Worku M,
Alcaide-German M, Sioftanos G, Bourne S, Lio KI, Shaked-Rabi M and
Martindale C: Rad51 inhibition is an effective means of targeting
DNA repair in glioma models and CD133+ tumor-derived cells. Neuro
Oncol. 13:487–499. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sugawara K, Shibasaki T, Takahashi H and
Seino S: Structure and functional roles of Epac2 (Rapgef4). Gene.
575:577–583. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bos JL: Epac proteins: Multi-purpose cAMP
targets. Trends Biochem Sci. 31:680–686. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang P, Liu Z, Chen H, Ye N, Cheng X and
Zhou J: Exchange proteins directly activated by cAMP (EPACs):
Emerging therapeutic targets. Bioorg Med Chem Lett. 27:1633–1639.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wild CT, Zhu Y, Na Y, Mei F, Ynalvez MA,
Chen H, Cheng X and Zhou J: Functionalized N,N-diphenylamines as
potent and selective EPAC2 inhibitors. ACS Med Chem Lett.
7:460–464. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sugimoto N, Miwa S, Tsuchiya H, Hitomi Y,
Nakamura H, Yachie A and Koizumi S: Targeted activation of PKA and
Epac promotes glioblastoma regression in vitro. Mol Clin
Oncol. 1:281–285. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kumar N, Prasad P, Jash E, Saini M, Husain
A, Goldman A and Sehrawat S: Insights into exchange factor directly
activated by cAMP (EPAC) as potential target for cancer treatment.
Mol Cell Biochem. 447:77–92. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shchors K, Massaras A and Hanahan D: Dual
targeting of the autophagic regulatory circuitry in gliomas with
repurposed drugs elicits cell-lethal autophagy and therapeutic
benefit. Cancer Cell. 28:456–471. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mostafavi H, Khaksarian M, Joghataei MT,
Soleimani M, Hassanzadeh G, Eftekhari S, Soleimani M, Mousavizadeh
K, Estiri H, Ahmadi S and Hadjighassem MR: Selective β2 adrenergic
agonist increases Cx43 and miR-451 expression via cAMP-Epac. Mol
Med Rep. 9:2405–2410. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Malchinkhuu E, Sato K, Maehama T, Ishiuchi
S, Yoshimoto Y, Mogi C, Kimura T, Kurose H, Tomura H and Okajima F:
Role of Rap1B and tumor suppressor PTEN in the negative regulation
of lysophosphatidic acid-induced migration by isoproterenol in
glioma cells. Mol Biol Cell. 20:5156–5165. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yu CF, Chen FH, Lu MH, Hong JH and Chiang
CS: Dual roles of tumour cells-derived matrix metalloproteinase 2
on brain tumour growth and invasion. Br J Cancer. 117:1828–1836.
2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Richard SA, Sackey M, Su Z and Xu H:
Pivotal neuroinflammatory and therapeutic role of high mobility
group box 1 in ischemic stroke. Biosci Rep. 37(pii):
BSR201711042017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rosenberg GA: Matrix metalloproteinases in
brain injury. J Neurotrauma. 12:833–842. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Du R, Petritsch C, Lu K, Liu P, Haller A,
Ganss R, Song H, Vandenberg S and Bergers G: Matrix
metalloproteinase-2 regulates vascular patterning and growth
affecting tumor cell survival and invasion in GBM. Neuro Oncol.
10:254–264. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou YH, Hess KR, Liu L, Linskey ME and
Yung WA: Modeling prognosis for patients with malignant astrocytic
gliomas: Quantifying the expression of multiple genetic markers and
clinical variables. Neuro Oncol. 7:485–494. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Seo H and Lee K: Epac2 contributes to
PACAP-induced astrocytic differentiation through calcium ion influx
in neural precursor cells. BMB Rep. 49:128–133. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gloerich M and Bos JL: Epac: Defining a
new mechanism for cAMP action. Annu Rev Pharmacol Toxicol.
50:355–375. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Grandoch M, Roscioni SS and Schmidt M: The
role of Epac proteins, novel cAMP mediators, in the regulation of
immune, lung and neuronal function. Br J Pharmacol. 159:265–284.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee K, Kobayashi Y, Seo H, Kwak JH, Masuda
A, Lim CS, Lee HR, Kang SJ, Park P, Sim SE, et al: Involvement of
cAMP-guanine nucleotide exchange factor II in hippocampal long-term
depression and behavioral flexibility. Mol Brain. 8:382015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fernandes HB, Riordan S, Nomura T, Remmers
CL, Kraniotis S, Marshall JJ, Kukreja L, Vassar R and Contractor A:
Epac2 mediates cAMP-dependent potentiation of neurotransmission in
the hippocampus. J Neurosci. 35:6544–6553. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cebolla B, Fernández-Pérez A, Perea G,
Araque A and Vallejo M: DREAM mediates cAMP-dependent, Ca2+-induced
stimulation of GFAP gene expression and regulates cortical
astrogliogenesis. J Neurosci. 28:6703–6713. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guo P, Imanishi Y, Cackowski FC, Jarzynka
MJ, Tao HQ, Nishikawa R, Hirose T, Hu B and Cheng SY: Up-regulation
of angiopoietin-2, matrix metalloprotease-2, membrane type 1
metalloprotease, and laminin 5 gamma 2 correlates with the
invasiveness of human glioma. Am J Pathol. 166:877–890. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang M, Wang T, Liu S, Yoshida D and
Teramoto A: The expression of matrix metalloproteinase-2 and-9 in
human gliomas of different pathological grades. Brain Tumor Pathol.
20:65–72. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Richard SA, Min W, Su Z and Xu HX: Epochal
neuroinflammatory role of high mobility group box 1 in central
nervous system diseases. AIMS Mol Sci. 4:185–218. 2017. View Article : Google Scholar
|
29
|
Lampert K, Machein U, Machein MR, Conca W,
Peter HH and Volk B: Expression of matrix metalloproteinases and
their tissue inhibitors in human brain tumors. Am J Pathol.
153:429–437. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Forsyth PA, Wong H, Laing TD, Rewcastle
NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM,
Sutherland G and Edwards DR: Gelatinase-A (MMP-2), gelatinase-B
(MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are
involved in different aspects of the pathophysiology of malignant
gliomas. Br J Cancer. 79:1828–1835. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Richard SA, Jiang Y, Xiang LH, Zhou S,
Wang J, Su Z and Xu H: Post-translational modifications of high
mobility group box 1 and cancer. Am J Transl Res. 9:5181–5196.
2017.PubMed/NCBI
|
32
|
Vallejo M: PACAP signaling to DREAM: A
cAMP-dependent pathway that regulates cortical astrogliogenesis.
Mol Neurobiol. 39:90–100. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang DD and Bordey A: The astrocyte
odyssey. Progress in neurobiology. 86:342–67. 2008.PubMed/NCBI
|