1
|
MacKie RM, Hauschild A and Eggermont AM:
Epidemiology of invasive cutaneous melanoma. Ann Oncol. 20 (Suppl
6):vi1–7. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Caini S, Gandini S, Sera F, Raimondi S,
Fargnoli MC, Boniol M and Armstrong BK: Meta-analysis of risk
factors for cutaneous melanoma according to anatomical site and
clinico-pathological variant. Eur J Cancer. 45:3054–3063. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Ingraffea A: Melanoma. Facial Plast Surg
Clin North Am. 21:33–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Owens B: Melanoma. Nature. 515:S1092014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Markovic SN, Erickson LA, Rao RD, Weenig
RH, Pockaj BA, Bardia A, Vachon CM, Schild SE, McWilliams RR, Hand
JL, et al: Malignant melanoma in the 21st century, part 1:
Epidemiology, risk factors, screening, prevention, and diagnosis.
Mayo Clin Proc. 82:364–380. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rigel DS: Epidemiology of melanoma. Semin
Cutan Med Surg. 29:204–209. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gandini S, Sera F, Cattaruzza MS, Pasquini
P, Picconi O, Boyle P and Melchi CF: Meta-analysis of risk factors
for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 41:45–60.
2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Elwood JM and Jopson J: Melanoma and sun
exposure: An overview of published studies. Int J Cancer.
73:198–203. 1997. View Article : Google Scholar : PubMed/NCBI
|
10
|
Stern RS; PUVA Follow up Study, : The risk
of melanoma in association with long-term exposure to PUVA. J Am
Acad Dermatol. 44:755–761. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bevona C, Goggins W, Quinn T, Fullerton J
and Tsao H: Cutaneous melanomas associated with nevi. Arch
Dermatol. 139:1620–1624. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tsao H and Niendorf K: Genetic testing in
hereditary melanoma. J Am Acad Dermatol. 51:803–808. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Stam-Posthuma JJ, van Duinen C, Scheffer
E, Vink J and Bergman W: Multiple primary melanomas. J Am Acad
Dermatol. 44:22–27. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hanauer DA, Rhodes DR, Sinha-Kumar C and
Chinnaiyan AM: Bioinformatics approaches in the study of cancer.
Curr Mol Med. 7:133–141. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cho A, Shim JE, Kim E, Supek F, Lehner B
and Lee I: MUFFINN: Cancer gene discovery via network analysis of
somatic mutation data. Genome Biol. 17:1292016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ding KF, Finlay D, Yin H, Hendricks WPD,
Sereduk C, Kiefer J, Sekulic A, LoRusso PM, Vuori K, Trent JM and
Schork NJ: Network rewiring in cancer: Applications to melanoma
cell lines and the cancer genome atlas patients. Front Genet.
9:2282018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Amberger JS, Bocchini CA, Schiettecatte F,
Scott AF and Hamosh A: OMIM.org: Online mendelian inheritance in
man (OMIM(R)), an online catalog of human genes and genetic
disorders. Nucleic Acids Res. 43:D789–D798. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dembélé D: Analysis of high-throughput
biological data using their rank values. Stat Methods Med Res.
96228021876418. 2018.(Epub ahead of print). View Article : Google Scholar
|
19
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41:W77–W83. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Abbas A, Kong XB, Liu Z, Jing BY and Gao
X: Automatic peak selection by a Benjamini-Hochberg-based
algorithm. PLoS One. 8:e531122013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Khuri S and Wuchty S: Essentiality and
centrality in protein interaction networks revisited. BMC
Bioinformatics. 16:1092015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ito S and Wakamatsu K: Chemistry of mixed
melanogenesis-pivotal roles of dopaquinone. Photochem Photobiol.
84:582–592. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Samokhvalov A, Hong L, Liu Y, Garguilo J,
Nemanich RJ, Edwards GS and Simon JD: Oxidation potentials of human
eumelanosomes and pheomelanosomes. Photochem Photobiol. 81:145–148.
2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Meredith P and Sarna T: The physical and
chemical properties of eumelanin. Pigment Cell Res. 19:572–594.
2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen KG, Valencia JC, Gillet JP, Hearing
VJ and Gottesman MM: Involvement of ABC transporters in
melanogenesis and the development of multidrug resistance of
melanoma. Pigment Cell Melanoma Res. 22:740–749. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Montano SP, Pigli YZ and Rice PA: The mu
transpososome structure sheds light on DDE recombinase evolution.
Nature. 491:413–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wiesner T, Murali R, Fried I, Cerroni L,
Busam K, Kutzner H and Bastian BC: A distinct subset of atypical
Spitz tumors is characterized by BRAF mutation and loss of BAP1
expression. Am J Surg Pathol. 36:818–830. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dey A, Seshasayee D, Noubade R, French DM,
Liu J, Chaurushiya MS, Kirkpatrick DS, Pham VC, Lill JR, Bakalarski
CE, et al: Loss of the tumor suppressor BAP1 causes myeloid
transformation. Science. 337:1541–1546. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Baymaz HI, Fournier A, Laget S, Ji Z,
Jansen PW, Smits AH, Ferry L, Mensinga A, Poser I, Sharrocks A, et
al: MBD5 and MBD6 interact with the human PR-DUB complex through
their methyl-CpG-binding domain. Proteomics. 14:2179–2189. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hebert L, Bellanger D, Guillas C, Campagne
A, Dingli F, Loew D, Fievet A, Jacquemin V, Popova T, Jean D, et
al: Modulating BAP1 expression affects ROS homeostasis, cell
motility and mitochondrial function. Oncotarget. 8:72513–72527.
2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Harbour JW, Onken MD, Roberson ED, Duan S,
Cao L, Worley LA, Council ML, Matatall KA, Helms C and Bowcock AM:
Frequent mutation of BAP1 in metastasizing uveal melanomas.
Science. 330:1410–1413. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Joseph RW, Kapur P, Serie DJ, Eckel-Passow
JE, Parasramka M, Ho T, Cheville JC, Frenkel E, Rakheja D,
Brugarolas J and Parker A: Loss of BAP1 protein expression is an
independent marker of poor prognosis in patients with low-risk
clear cell renal cell carcinoma. Cancer. 120:1059–1067. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Hershey CL and Fisher DE: Genomic analysis
of the microphthalmia locus and identification of the MITF-J/Mitf-J
isoform. Gene. 347:73–82. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Fuse N, Yasumoto K, Suzuki H, Takahashi K
and Shibahara S: Identification of a melanocyte-type promoter of
the microphthalmia-associated transcription factor gene. Biochem
Biophys Res Commun. 219:702–707. 1996. View Article : Google Scholar : PubMed/NCBI
|
35
|
Garraway LA, Widlund HR, Rubin MA, Getz G,
Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J,
et al: Integrative genomic analyses identify MITF as a lineage
survival oncogene amplified in malignant melanoma. Nature.
436:117–122. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Haq R, Shoag J, Andreu-Perez P, Yokoyama
S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL,
et al: Oncogenic BRAF regulates oxidative metabolism via PGC1α and
MITF. Cancer Cell. 23:302–315. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gudbjartsson DF, Sulem P, Stacey SN,
Goldstein AM, Rafnar T, Sigurgeirsson B, Benediktsdottir KR,
Thorisdottir K, Ragnarsson R, Sveinsdottir SG, et al: ASIP and TYR
pigmentation variants associate with cutaneous melanoma and basal
cell carcinoma. Nat Genet. 40:886–891. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Saternus R, Pilz S, Gräber S, Kleber M,
März W, Vogt T and Reichrath J: A closer look at evolution:
Variants (SNPs) of genes involved in skin pigmentation, including
EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum
concentration. Endocrinology. 156:39–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Callier P, Calvel P, Matevossian A,
Makrythanasis P, Bernard P, Kurosaka H, Vannier A, Thauvin-Robinet
C, Borel C, Mazaud-Guittot S, et al: A Loss of Function mutation in
the palmitoyl-transferase HHAT Leads to Syndromic 46,XY disorder of
sex development by impeding hedgehog protein palmitoylation and
signaling. PLoS Genet. 10:e10043402014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Abildgaard C and Guldberg P: Molecular
drivers of cellular metabolic reprogramming in melanoma. Trends Mol
Med. 21:164–171. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Abildgaard C, Dahl C, Basse AL, Ma T and
Guldberg P: Bioenergetic modulation with dichloroacetate reduces
the growth of melanoma cells and potentiates their response to
BRAFV600E inhibition. J Transl Med. 12:2472014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Barbi de Moura M, Vincent G, Fayewicz SL,
Bateman NW, Hood BL, Sun M, Suhan J, Duensing S, Yin Y, Sander C,
et al: Mitochondrial respiration-an important therapeutic target in
melanoma. PLoS One. 7:e406902012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hall A, Meyle KD, Lange MK, Klima M,
Sanderhoff M, Dahl C, Abildgaard C, Thorup K, Moghimi SM, Jensen
PB, et al: Dysfunctional oxidative phosphorylation makes malignant
melanoma cells addicted to glycolysis driven by the (V600E)BRAF
oncogene. Oncotarget. 4:584–599. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Scott DA, Richardson AD, Filipp FV,
Knutzen CA, Chiang GG, Ronai ZA, Osterman AL and Smith JW:
Comparative metabolic flux profiling of melanoma cell lines: Beyond
the Warburg effect. J Biol Chem. 286:42626–42634. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dong J, Phelps RG, Qiao R, Yao S, Benard
O, Ronai Z and Aaronson SA: BRAF oncogenic mutations correlate with
progression rather than initiation of human melanoma. Cancer Res.
63:3883–5. 2003.PubMed/NCBI
|
46
|
Pflugfelder A, Kochs C, Blum A, Capellaro
M, Czeschik C, Dettenborn T, Dill D, Dippel E, Eigentler T, Feyer
P, et al: Malignant melanoma S3-guideline ‘diagnosis, therapy and
follow-up of melanoma’. J Dtsch Dermatol Ges. 11 (Suppl 6):S1–S126.
2013. View Article : Google Scholar
|
47
|
Stadler S, Weina K, Gebhardt C and Utikal
J: New therapeutic options for advanced non-resectable malignant
melanoma. Adv Med Sc. 60:83–88. 2015. View Article : Google Scholar
|
48
|
Garcia F, Zalba G, Paez G, Encio I and de
Miguel C: Molecular cloning and characterization of the human p44
mitogen-activated protein kinase gene. Genomics. 50:69–78. 1998.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Orouji E, Orouji A, Gaiser T, Larribere L,
Gebhardt C and Utikal J: MAP kinase pathway gene copy alterations
in NRAS/BRAF wild-type advanced melanoma. Int J Cancer.
138:2257–2262. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Nan H, Du M, De Vivo I, Manson JE, Liu S,
McTiernan A, Curb JD, Lessin LS, Bonner MR, Guo Q, et al: Shorter
telomeres associate with a reduced risk of melanoma development.
Cancer Res. 71:6758–6763. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Han J, Qureshi AA, Prescott J, Guo Q, Ye
L, Hunter DJ and De Vivo I: A prospective study of telomere length
and the risk of skin cancer. J Invest Dermatol. 129:415–421. 2009.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Bataille V, Kato BS, Falchi M, Gardner J,
Kimura M, Lens M, Perks U, Valdes AM, Bennett DC, Aviv A and
Spector TD: Nevus size and number are associated with telomere
length and represent potential markers of a decreased senescence in
vivo. Cancer Epidemiol Biomarkers Prev. 16:1499–1502. 2007.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Horn S, Figl A, Rachakonda PS, Fischer C,
Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, et al:
TERT promoter mutations in familial and sporadic melanoma. Science.
339:959–961. 2013. View Article : Google Scholar : PubMed/NCBI
|
54
|
Robles-Espinoza CD, Harland M, Ramsay AJ,
Aoude LG, Quesada V, Ding Z1, Pooley KA, Pritchard AL, Tiffen JC,
Petljak M, et al: POT1 loss-of-function variants predispose to
familial melanoma. Nat Genet. 46:478–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Nicholl MB, Chen X, Qin C, Bai Q, Zhu Z,
Davis MR and Fang Y: IL-32α has differential effects on
proliferation and apoptosis of human melanoma cell lines. J Surg
Oncol. 113:364–369. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng
WL, Tseng YH, Chen CY, Lin CD, Wu JI, Wang LH and Lin KH:
Interleukin-32 increases human gastric cancer cell invasion
associated with tumor progression and metastasis. Clin Cancer Res.
20:2276–2288. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Yun HM, Oh JH, Shim JH, Ban JO, Park KR,
Kim JH, Lee DH, Kang JW, Park YH, Yu D, et al: Antitumor activity
of IL-32β through the activation of lymphocytes, and the
inactivation of NF-κB and STAT3 signals. Cell Death Dis.
4:e6402013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Oh JH, Cho MC, Kim JH, Lee SY, Kim HJ,
Park ES, Ban JO, Kang JW, Lee DH, Shim JH, et al: IL-32γ inhibits
cancer cell growth through inactivation of NF-κB and STAT3 signals.
Oncogene. 30:3345–3359. 2011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Chan KS, Sano S, Kiguchi K, Anders J,
Komazawa N, Takeda J and DiGiovanni J: Disruption of Stat3 reveals
a critical role in both the initiation and the promotion stages of
epithelial carcinogenesis. J Clin Invest. 114:720–728. 2004.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Jenkins BJ, Roberts AW, Najdovska M, Grail
D and Ernst M: The threshold of gp130-dependent STAT3 signaling is
critical for normal regulation of hematopoiesis. Blood.
105:3512–3520. 2005. View Article : Google Scholar : PubMed/NCBI
|
61
|
Lee H, Herrmann A, Deng JH, Kujawski M,
Niu G, Li Z, Forman S, Jove R, Pardoll DM and Yu H: Persistently
activated Stat3 maintains constitutive NF-kappaB activity in
tumors. Cancer Cell. 15:283–293. 2009. View Article : Google Scholar : PubMed/NCBI
|
62
|
Arvanitis C and Felsher DW: Conditional
transgenic models define how MYC initiates and maintains
tumorigenesis. Semin Cancer Biol. 16:313–317. 2006. View Article : Google Scholar : PubMed/NCBI
|
63
|
Hay N and Sonenberg N: Upstream and
downstream of mTOR. Genes Dev. 18:1926–1945. 2004. View Article : Google Scholar : PubMed/NCBI
|
64
|
Beevers CS, Li F, Liu L and Huang S:
Curcumin inhibits the mammalian target of rapamycin-mediated
signaling pathways in cancer cells. Int J Cancer. 119:757–764.
2006. View Article : Google Scholar : PubMed/NCBI
|
65
|
Matsubara S, Ding Q, Miyazaki Y, Kuwahata
T, Tsukasa K and Takao S: mTOR plays critical roles in pancreatic
cancer stem cells through specific and stemness-related functions.
Sci Rep. 3:32302013. View Article : Google Scholar : PubMed/NCBI
|
66
|
Lethe B, Lucas S, Michaux L, De Smet C,
Godelaine D, Serrano A, De Plaen E and Boon T: LAGE-1, a new gene
with tumor specificity. Int J Cancer. 76:903–908. 1998. View Article : Google Scholar : PubMed/NCBI
|
67
|
Nicholaou T, Ebert L, Davis ID, Robson N,
Klein O, Maraskovsky E, Chen W and Cebon J: Directions in the
immune targeting of cancer: Lessons learned from the cancer-testis
Ag NY-ESO-1. Immunol Cell Biol. 84:303–317. 2006. View Article : Google Scholar : PubMed/NCBI
|
68
|
Vizkeleti L, Kiss T, Koroknai V, Ecsedi S,
Papp O, Szasz I, Adany R and Balazs M: Altered integrin expression
patterns shown by microarray in human cutaneous melanoma. Melanoma
Res. 27:180–188. 2017. View Article : Google Scholar : PubMed/NCBI
|
69
|
Wozniak M, Peczek L, Czernek L and Düchler
M: Analysis of the miRNA profiles of melanoma exosomes derived
under normoxic and hypoxic culture conditions. Anticancer Res.
37:6779–6789. 2017.PubMed/NCBI
|