Role of caprin‑1 in carcinogenesis (Review)
- Authors:
- Zhuo‑Shun Yang
- Hong Qing
- Hui Gui
- Jie Luo
- Long‑Jun Dai
- Bin Wang
-
Affiliations: Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China, School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China - Published online on: April 30, 2019 https://doi.org/10.3892/ol.2019.10295
- Pages: 15-21
This article is mentioned in:
Abstract
Gerstberger S, Hafner M and Tuschl T: A census of human RNA-binding proteins. Nat Rev Genet. 15:829–845. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gerstberger S, Hafner M, Ascano M and Tuschl T: Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. Adv Exp Med Biol. 825:1–55. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mori T, Ngouv H, Hayashida M, Akutsu T and Nacher JC: ncRNA-disease association prediction based on sequence information and tripartite network. BMC Syst Biol. 12 (Suppl 1):S372018. View Article : Google Scholar | |
Hudson WH and Ortlund EA: The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol. 15:749–760. 2014. View Article : Google Scholar : PubMed/NCBI | |
Keene JD: RNA regulons: Coordination of post-transcriptional events. Nat Rev Genet. 8:533–543. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nishida K, Kuwano Y, Nishikawa T, Masuda K and Rokutan K: RNA binding proteins and genome integrity. Int J Mol Sci. 18:E13412017. View Article : Google Scholar : PubMed/NCBI | |
Kai M: Roles of RNA-binding proteins in DNA damage response. Int J Mol Sci. 17:3102016. View Article : Google Scholar : PubMed/NCBI | |
Harvey R, Dezi V, Pizzinga M and Willis AE: Post-transcriptional control of gene expression following stress: The role of RNA-binding proteins. Biochem Soc Trans. 45:1007–1014. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sheinberger J and Shav-Tal Y: mRNPs meet stress granules. FEBS Lett. 591:2534–2542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maziuk B, Balance HI and Wolozin B: Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front Mol Neurosci. 10:892017. View Article : Google Scholar : PubMed/NCBI | |
Geuens T, Bouhy D and Timmerman V: The hnRNP family: Insights into their role in health and disease. Hum Genet. 135:851–867. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wurth L and Gebauer F: RNA-binding proteins, multifaceted translational regulators in cancer. Biochim Biophys Acta. 1849:881–886. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pereira B, Billaud M and Almeida R: RNA-binding proteins in cancer: Old players and new actors. Trends Cancer. 3:506–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
Paronetto MP, Cappellari M, Busa R, Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE and Sette C: Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 70:229–239. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hsieh AC and Ruggero D: Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res. 16:4914–4920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abdelmohsen K and Gorospe M: Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA. 1:214–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang B, David MD and Schrader JW: Absence of caprin-1 results in defects in cellular proliferation. J Immunol. 175:4274–4282. 2005. View Article : Google Scholar : PubMed/NCBI | |
Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D and Schrader JW: Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol Cell Biol. 27:2324–2342. 2007. View Article : Google Scholar : PubMed/NCBI | |
Reich J and Papoulas O: Caprin controls follicle stem cell fate in the Drosophila ovary. PLoS One. 7:e353652012. View Article : Google Scholar : PubMed/NCBI | |
Qiu YQ, Yang CW, Lee YZ, Yang RB, Lee CH, Hsu HY, Chang CC and Lee SJ: Targeting a ribonucleoprotein complex containing the caprin-1 protein and the c-Myc mRNA suppresses tumor growth in mice: An identification of a novel oncotarget. Oncotarget. 6:2148–2163. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grill B, Wilson GM, Zhang KX, Wang B, Doyonnas R, Quadroni M and Schrader JW: Activation/division of lymphocytes results in increased levels of cytoplasmic activation/proliferation-associated protein-1: Prototype of a new family of proteins. J Immunol. 172:2389–2400. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gong B, Hu H, Chen J, Cao S, Yu J, Xue J, Chen F, Cai Y, He H and Zhang L: Caprin-1 is a novel microRNA-223 target for regulating the proliferation and invasion of human breast cancer cells. Biomed Pharmacother. 67:629–636. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sabile AA, Arlt MJ, Muff R, Husmann K, Hess D, Bertz J, Langsam B, Aemisegger C, Ziegler U, Born W and Fuchs B: Caprin-1, a novel Cyr61-interacting protein, promotes osteosarcoma tumor growth and lung metastasis in mice. Biochim Biophys Acta. 1832:1173–1182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiao H, Zeng J, Li H, Chen K, Yu G, Hu J, Tang K, Zhou H, Huang Q, Li A, et al: MiR-1 downregulation correlates with poor survival in clear cell renal cell carcinoma where it interferes with cell cycle regulation and metastasis. Oncotarget. 6:13201–13215. 2015. View Article : Google Scholar : PubMed/NCBI | |
Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, Deng Z, Kumar A, Zhang L, Merchant ML, et al: MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 8:144482017. View Article : Google Scholar : PubMed/NCBI | |
Matsumura I, Tanaka H and Kanakura Y: E2F1 and c-Myc in cell growth and death. Cell Cycle. 2:333–338. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pardee AB: G1 events and regulation of cell proliferation. Science. 246:603–608. 1989. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Gui H, Tang XJ, Yang ZS, Zou DD, Lu JT, Yan LD, Dai LJ, Luo J and Wang B: Expression and tumor-Promoting effects of caprin-1 in human glioma. Glioma. 1:136–141. 2018. View Article : Google Scholar | |
Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher DW: MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 352:227–231. 2016. View Article : Google Scholar : PubMed/NCBI | |
El Fatimy R, Tremblay S, Dury AY, Solomon S, De Koninck P, Schrader JW and Khandjian EW: Fragile X mental retardation protein interacts with the RNA-binding protein caprin1 in neuronal ribonucleoprotein complexes [corrected]. PLoS One. 7:e393382012. View Article : Google Scholar : PubMed/NCBI | |
Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E, Mori Y, Kamitani W and Matsuura Y: Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J Virol. 87:489–502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K and Warren ST: Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci. 7:113–117. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhu J, Huang X and Du Z: Crystal structure of a dimerization domain of human Caprin-1: Insights into the assembly of an evolutionarily conserved ribonucleoprotein complex consisting of Caprin-1, FMRP and G3BP1. Acta Crystallogr D Struct Biol. 72:718–727. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mingle LA, Okuhama NN, Shi J, Singer RH, Condeelis J and Liu G: Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J Cell Sci. 118:2425–2433. 2005. View Article : Google Scholar : PubMed/NCBI | |
Carson JH and Barbarese E: Systems analysis of RNA trafficking in neural cells. Biol Cell. 97:51–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
Copsey AC, Cooper S, Parker R, Lineham E, Lapworth C, Jallad D, Sweet S and Morley SJ: The helicase, DDX3X, interacts with poly(A)-binding protein 1 (PABP1) and caprin-1 at the leading edge of migrating fibroblasts and is required for efficient cell spreading. Biochem J. 474:3109–3120. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thomas MG, Loschi M, Desbats MA and Boccaccio GL: RNA granules: The good, the bad and the ugly. Cell Signal. 23:324–334. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kedersha N, Ivanov P and Anderson P: Stress granules and cell signaling: More than just a passing phase? Trends Biochem Sci. 38:494–506. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM and Anderson P: Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell. 15:5383–5398. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E and Tazi J: The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol. 160:823–831. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE and Anderson P: Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol. 151:1257–1268. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y and Khandjian EW: Trapping of messenger RNA by fragile X mental retardation protein into cytoplasmic granules induces translation repression. Hum Mol Genet. 11:3007–3017. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK and Anderson P: MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23:1313–1324. 2004. View Article : Google Scholar : PubMed/NCBI | |
Buchan JR and Parker R: Eukaryotic stress granules: The ins and outs of translation. Mol Cell. 36:932–941. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, Jain RK and Garkavtsev I: Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci USA. 114:1033–1038. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anderson P, Kedersha N and Ivanov P: Stress granules, P-bodies and cancer. Biochim Biophys Acta. 1849:861–870. 2015. View Article : Google Scholar : PubMed/NCBI | |
Adjibade P, St-Sauveur VG, Quevillon Huberdeau M, Fournier MJ, Savard A, Coudert L, Khandjian EW and Mazroui R: Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells. Oncotarget. 6:43927–43943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vilas-Boas Fde A, da Silva AM, de Sousa LP, Lima KM, Vago JP, Bittencourt LF, Dantas AE, Gomes DA, Vilela MC, Teixeira MM and Barcelos LS: Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents. J Neurooncol. 127:253–260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, Zhang F, Ng T, Delattre O, Evdokimova V, et al: YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol. 208:913–929. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leprivier G, Rotblat B, Khan D, Jan E and Sorensen PH: Stress-mediated translational control in cancer cells. Biochim Biophys Acta. 1849:845–860. 2015. View Article : Google Scholar : PubMed/NCBI | |
Szaflarski W, Fay MM, Kedersha N, Zabel M, Anderson P and Ivanov P: Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget. 7:30307–30322. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fournier MJ, Coudert L, Mellaoui S, Adjibade P, Gareau C, Côté MF, Sonenberg N, Gaudreault RC and Mazroui R: Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol. 33:2285–2301. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tan N, Dai L, Liu X, Pan G, Chen H, Huang J and Xu Q: Upregulation of caprin1 expression is associated with poor prognosis in hepatocellular carcinoma. Pathol Res Pract. 213:1563–1567. 2017. View Article : Google Scholar : PubMed/NCBI | |
Campanile C, Arlt MJ, Kramer SD, Honer M, Gvozdenovic A, Brennecke P, Fischer CR, Sabile AA, Müller A, Ametamey SM, et al: Characterization of different osteosarcoma phenotypes by PET imaging in preclinical animal models. J Nucl Med. 54:1362–1368. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kedracka-Krok S, Jankowska U, Elas M, Sowa U, Swakon J, Cierniak A, Olko P, Romanowska-Dixon B and Urbanska K: Proteomic analysis of proton beam irradiated human melanoma cells. PLoS One. 9:e846212014. View Article : Google Scholar : PubMed/NCBI | |
Min L, Ruan Y, Shen Z, Jia D, Wang X, Zhao J, Sun Y and Gu J: Overexpression of Ras-GTPase-activating protein SH3 domain-binding protein 1 correlates with poor prognosis in gastric cancer patients. Histopathology. 67:677–688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhang SH, He HW, Zhang CX, Yu DK and Shao RG: Downregulation of G3BPs inhibits the growth, migration and invasion of human lung carcinoma H1299 cells by suppressing the Src/FAK-associated signaling pathway. Cancer Gene Ther. 20:622–629. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taniuchi K, Nishimori I and Hollingsworth MA: The N-terminal domain of G3BP enhances cell motility and invasion by posttranscriptional regulation of BART. Mol Cancer Res. 9:856–866. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhang S, He H, Zhao W, Chen J and Shao RG: GAP161 targets and downregulates G3BP to suppress cell growth and potentiate cisplaitin-mediated cytotoxicity to colon carcinoma HCT116 cells. Cancer Sci. 103:1848–1856. 2012. View Article : Google Scholar : PubMed/NCBI |