Cervical cancer stem cell‑associated genes: Prognostic implications in cervical cancer (Review)
- Authors:
- Jorge Organista‑Nava
- Yazmín Gómez‑Gómez
- Olga Lilia Garibay‑Cerdenares
- Marco Antonio Leyva‑Vázquez
- Berenice Illades‑Aguiar
-
Affiliations: Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico - Published online on: May 3, 2019 https://doi.org/10.3892/ol.2019.10307
- Pages: 7-14
-
Copyright: © Organista‑Nava et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Globocan 2012, . http://globocan.iarc.frOct. 2017 | |
Paavonen J: Human papillomavirus infection and the development of cervical cancer and related genital neoplasias. Int J Infect Dis. 11 (Suppl 2):S3–S9. 2007. View Article : Google Scholar : PubMed/NCBI | |
Senapati R, Nayak B, Kar SK and Dwibedi B: HPV genotypes co-infections associated with cervical carcinoma: Special focus on phylogenetically related and non-vaccine targeted genotypes. PLoS One. 12:e01878442017. View Article : Google Scholar : PubMed/NCBI | |
Badaracco G, Savarese A, Micheli A, Rizzo C, Paolini F, Carosi M, Cutillo G, Vizza E, Arcangeli G and Venuti A: Persistence of HPV after radio-chemotherapy in locally advanced cervical cancer. Oncol Rep. 23:1093–1099. 2010.PubMed/NCBI | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, Münger K, Feldman S, McKeon FD, Xian W and Crum CP: A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci USA. 109:10516–10521. 2012. View Article : Google Scholar : PubMed/NCBI | |
Herfs M, Vargas SO, Yamamoto Y, Howitt BE, Nucci MR, Hornick JL, Mckeon FD, Xian W and Crum CP: A novel blueprint for ‘top down’ differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. J Pathol. 229:460–468. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang YJ, Bian L, Fang ZH, Zhang QY and Cheng JX: CD44+/CD24+ cervical cancer cells resist radiotherapy and exhibit properties of cancer stem cells. Eur Rev Med Pharmacol Sci. 20:1745–1754. 2016.PubMed/NCBI | |
López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C and García-Carrancá A: Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 12:482012. View Article : Google Scholar : PubMed/NCBI | |
Ortiz-Sánchez E, Santiago-López L, Cruz-Domínguez VB, Toledo-Guzmán ME, Hernández-Cueto D, Muñiz-Hernández S, Garrido E, De León DC and García-Carrancá A: Characterization of cervical cancer stem cell-like cells: Phenotyping, stemness, and human papilloma virus co-receptor expression. Oncotarget. 7:31943–31954. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dobbin ZC and Landen CN: Isolation and characterization of potential cancer stem cells from solid human tumors-potential applications. Curr Protoc Pharmacol. 63:Unit 14.28. 2013. View Article : Google Scholar : PubMed/NCBI | |
McLaughlin-Drubin ME, Meyers J and Munger K: Cancer associated human papillomaviruses. Curr Opin Virol. 2:459–466. 2012. View Article : Google Scholar : PubMed/NCBI | |
Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, García-Villa E, Bonilla-Delgado J, Lagunas-Martínez A, Tapia JS, Lambert PF, García-Carrancá A and Gariglio P: The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology. 499:230–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang R and Rofstad EK: Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget. 8:35351–35367. 2017.PubMed/NCBI | |
Hou T, Zhang W, Tong C, Kazobinka G, Huang X, Huang Y and Zhang Y: Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome. BMC Cancer. 15:7852015. View Article : Google Scholar : PubMed/NCBI | |
Martens JE, Arends J, Van Der Linden PJ, De Boer BA and Helmerhorst TJ: Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res. 24:771–776. 2004.PubMed/NCBI | |
Ikeda K, Tate G, Suzuki T and Mitsuya T: Coordinate expression of cytokeratin 8 and cytokeratin 17 immunohistochemical staining in cervical intraepithelial neoplasia and cervical squamous cell carcinoma: An immunohistochemical analysis and review of the literature. Gynecol Oncol. 108:598–602. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aksoy P, Gottschalk EY and Meneses PI: HPV entry into cells. Mutat Res Rev Mutat Res. 772:13–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
López J, Ruíz G, Organista-Nava J, Gariglio P and García-Carrancá A: Human papillomavirus infections and cancer stem cells of tumors from the uterine cervix. Open Virol J. 6:232–240. 2012. View Article : Google Scholar : PubMed/NCBI | |
Olivero C, Lanfredini S, Borgogna C, Gariglio M and Patel GK: HPV-induced field cancerisation: Transformation of adult tissue stem cell into cancer stem cell. Front Microbiol. 9:5462018. View Article : Google Scholar : PubMed/NCBI | |
Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S, Zmoos AF, Cecchini MJ, Spacek D, Batista LF, O'Brien M, et al: Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell. 16:39–50. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E and Xu Y: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol. 7:165–171. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tyagi A, Vishnoi K, Mahata S, Verma G, Srivastava Y, Masaldan S, Roy BG, Bharti AC and Das BC: Cervical cancer stem cells selectively overexpress HPV oncoprotein E6 that controls stemness and self-renewal through upregulation of HES1. Clin Cancer Res. 22:4170–4184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, Li X, Zhang X, Gong T, Guo J, et al: HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget. 7:57050–57065. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, Liu F, Que J and Lan X: The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 25:1264–1271. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang YD, Cai N, Wu XL, Cao HZ, Xie LL and Zheng PS: OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis. 4:e7602013. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Yu AQ, Wang XL, Guo XR, Yuan YH and Li DS: Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes. Oncol Rep. 35:2643–2650. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jeong JY, Kang H, Kim TH, Kim G, Heo JH, Kwon AY, Kim S, Jung SG and An HJ: MicroRNA-136 inhibits cancer stem cell activity and enhances the anti-tumor effect of paclitaxel against chemoresistant ovarian cancer cells by targeting Notch3. Cancer Lett. 386:168–178. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu XF, Yang WT, Xu R, Liu JT and Zheng PS: Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells. PLoS One. 9:e870922014. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Zhang X, Zhang M, Zhang J, Sheng Y, Sun X, Chen Q and Wang LX: Increased Nanog expression promotes tumor development and Cisplatin resistance in human esophageal cancer cells. Cell Physiol Biochem. 30:943–952. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jia Q, Zhang X, Deng T and Gao J: Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells. Cell Reprogram. 15:143–150. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pastò A, Serafin V, Pilotto G, Lago C, Bellio C, Trusolino L, Bertotti A, Hoey T, Plateroti M, Esposito G, et al: NOTCH3 signaling regulates MUSASHI-1 expression in metastatic colorectal cancer cells. Cancer Res. 74:2106–2118. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng D, Peng C, Li C, Zhou Y, Li M, Ling B, Wei H and Tian Z: Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol Rep. 22:1129–1134. 2009.PubMed/NCBI | |
Grasso C, Anaka M, Hofmann O, Sompallae R, Broadley K, Hide W, Berridge MV, Cebon J, Behren A and McConnell MJ: Iterative sorting reveals CD133+ and CD133-melanoma cells as phenotypically distinct populations. BMC Cancer. 16:7262016. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L, Wang M, Westerdaal NA, Kvalheim G and Gaudernack G: Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One. 8:e570202013. View Article : Google Scholar : PubMed/NCBI | |
Muraro MG, Mele V, Däster S, Han J, Heberer M, Cesare Spagnoli G and Iezzi G: CD133+, CD166+CD44+, and CD24+CD44+ phenotypes fail to reliably identify cell populations with cancer stem cell functional features in established human colorectal cancer cell lines. Stem Cells Transl Med. 1:592–603. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJN, Fakiruddin KS and Yahaya B: Human non-small cell lung cancer expresses putative cancer stem cell markers and exhibits the transcriptomic profile of multipotent cells. BMC Cancer. 15:842015. View Article : Google Scholar : PubMed/NCBI | |
Chen HY, Lin LT, Wang ML, Tsai KL, Huang PI, Yang YP, Lee YY, Chen YW, Lo WL, Lan YT, et al: Musashi-1 promotes chemoresistant granule formation by PKR/eIF2α signalling cascade in refractory glioblastoma. Biochim Biophys Acta Mol Basis Dis. 1864:1850–1861. 2018. View Article : Google Scholar : PubMed/NCBI | |
Okano H, Imai T and Okabe M: Musashi: A translational regulator of cell fate. J Cell Sci. 115:1355–1359. 2002.PubMed/NCBI | |
Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC and Vasiliou V: Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med. 56:89–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ueda K, Ogasawara S, Akiba J, Nakayama M, Todoroki K, Ueda K, Sanada S, Suekane S, Noguchi M, Matsuoka K and Yano H: Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLoS One. 8:e754632013. View Article : Google Scholar : PubMed/NCBI | |
Rao QX, Yao TT, Zhang BZ, Lin RC, Chen ZL, Zhou H, Wang LJ, Lu HW, Chen Q, Di N and Lin ZQ: Expression and functional role of ALDH1 in cervical carcinoma cells. Asian Pac J Cancer Prev. 13:1325–1331. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Liang J, Rao Q, Xie X, Li R, Liu Y, Zhou H, Han J, Yao T and Lin Z: Aldehyde dehydrogenase 1 expression predicts chemoresistance and poor clinical outcomes in patients with locally advanced cervical cancer treated with neoadjuvant chemotherapy prior to radical hysterectomy. Ann Surg Oncol. 23:163–170. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao T, Wu Z, Liu Y, Rao Q and Lin Z: Aldehyde dehydrogenase 1 (ALDH1) positivity correlates with poor prognosis in cervical cancer. J Int Med Res. 42:1038–1042. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yao T, Lu R, Li Y, Peng Y, Ding M, Xie X and Lin Z: ALDH1 might influence the metastatic capability of HeLa cells. Tumor Biol. 36:7045–7051. 2015. View Article : Google Scholar | |
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H and Smith A: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 95:379–391. 1998. View Article : Google Scholar : PubMed/NCBI | |
Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, et al: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 38:431–440. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Zhang BH, Zheng SS, Gao DM, Qiu SJ, Wu WZ and Ren ZG: Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol. 8:232015. View Article : Google Scholar : PubMed/NCBI | |
Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U and Beier CP: CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67:4010–4015. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li SW, Wu XL, Dong CL, Xie XY, Wu JF and Zhang X: The differential expression of OCT4 isoforms in cervical carcinoma. PLoS One. 10:e01180332015. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Huang X, Xie X, Su J, Yuan J and Chen X: High expression of SOX2 and OCT4 indicates radiation resistance and an independent negative prognosis in cervical squamous cell carcinoma. J Histochem Cytochem. 62:499–509. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang Y, Yin C and Li X: Clinical significance of the stem cell gene Oct-4 in cervical cancer. Tumor Biol. 35:5339–5345. 2014. View Article : Google Scholar | |
Liu H, Wang H, Li C, Zhang T, Meng X, Zhang Y and Qian H: Spheres from cervical cancer cells display stemness and cancer drug resistance. Oncol Lett. 12:2184–2188. 2016. View Article : Google Scholar : PubMed/NCBI | |
Villodre ES, Kipper FC, Pereira MB and Lenz G: Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev. 51:1–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim BW, Cho H, Choi CH, Ylaya K, Chung JY, Kim JH and Hewitt SM: Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMC Cancer. 15:10152015. View Article : Google Scholar : PubMed/NCBI | |
Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E, et al: SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 511:246–250. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wilbertz T, Wagner P, Petersen K, Stiedl AC, Scheble VJ, Maier S, Reischl M, Mikut R, Altorki NK, Moch H, et al: SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol. 24:944–953. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stewart CJ and Crook M: SOX2 expression in cervical intraepithelial neoplasia grade 3 (CIN3) and superficially invasive (stage IA1) squamous carcinoma of the cervix. Int J Gynecol Pathol. 35:566–573. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaufhold S, Garbán H and Bonavida B: Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J Exp Clin Cancer Res. 35:842016. View Article : Google Scholar : PubMed/NCBI | |
Krebsbach PH and Villa-Diaz LG: The role of integrin α6 (CD49f) in stem cells: More than a conserved biomarker. Stem Cells and Dev. 26:1090–1099. 2017. View Article : Google Scholar | |
Chang JY, Wang C, Jin C, Yang C, Huang Y, Liu J, McKeehan WL, D'Souza RN and Wang F: Self-renewal and multilineage differentiation of mouse dental epithelial stem cells. Stem Cell Res. 11:990–1002. 2013. View Article : Google Scholar : PubMed/NCBI | |
Villanueva-Toledo J, Ponciano-Gómez A, Ortiz-Sánchez E and Garrido E: Side populations from cervical-cancer-derived cell lines have stem-cell-like properties. Mol Biol Rep. 41:1993–2004. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ammothumkandy A, Maliekal TT, Bose MV, Rajkumar T, Shirley S, Thejaswini B, Giri VG and Krishna S: CD66 and CD49f expressing cells are associated with distinct neoplastic phenotypes and progression in human cervical cancer. Eur J Cancer. 60:166–178. 2016. View Article : Google Scholar : PubMed/NCBI | |
Castelli G, Pelosi E and Testa U: Liver cancer: Molecular characterization, clonal evolution and cancer stem cells. Cancers (Basel). 9(pii): E1272017. View Article : Google Scholar : PubMed/NCBI | |
Xiao S, Zhou Y, Jiang J, Yuan L and Xue M: CD44 affects the expression level of FOS-like antigen 1 in cervical cancer tissues. Mol Med Rep. 9:1667–1674. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J and Buck DW: AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 90:5002–5012. 1997.PubMed/NCBI | |
Jang JW, Song Y, Kim SH, Kim J and Seo HR: Potential mechanisms of CD133 in cancer stem cells. Life Sci. 184:25–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Javed S, Sharma BK, Sood S, Sharma S, Bagga R, Bhattacharyya S, Rayat CS, Dhaliwal L and Srinivasan R: Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer. BMC Cancer. 18:3572018. View Article : Google Scholar : PubMed/NCBI | |
McGowan KM and Coulombe PA: Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J Cell Biol. 143:469–486. 1998. View Article : Google Scholar : PubMed/NCBI | |
Carrilho C, Alberto M, Buane L and David L: Keratins 8, 10, 13, and 17 are useful markers in the diagnosis of human cervix carcinomas. Hum Pathol. 35:546–551. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Han L, Zhou C, Wei W, Chen X, Yi H, Wu X, Bai X, Guo S, Yu Y, et al: TGF-β1-induced CK17 enhances cancer stem cell-like properties rather than EMT in promoting cervical cancer metastasis via the ERK1/2-MZF1 signaling pathway. FEBS J. 284:3000–3017. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thomas C and Tampé R: Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr Opin Struct Biol. 51:116–128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Begicevic RR and Falasca M: ABC transporters in cancer stem cells: Beyond chemoresistance. Int J Mol Sci. 18(pii): E23622017. View Article : Google Scholar : PubMed/NCBI | |
Shukla S, Ohnuma S and Ambudkar SV: Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets. 12:621–630. 2011. View Article : Google Scholar : PubMed/NCBI | |
Noguchi K, Katayama K and Sugimoto Y: Human ABC transporter ABCG2/BCRP expression in chemoresistance: Basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers Med. 7:53–64. 2014.PubMed/NCBI | |
Dębska S, Owecka A, Czernek U, Szydłowska-Pazera K, Habib M and Potemski P: Transmembrane transporters ABCC-structure, function and role in multidrug resistance of cancer cells. Postepy Hig Med Dosw (Online). 65:552–561. 2011.(In Polish). View Article : Google Scholar : PubMed/NCBI | |
Kim JK, Jeon HY and Kim H: The molecular mechanisms underlying the therapeutic resistance of cancer stem cells. Arch Pharm Res. 38:389–401. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tyagi A, Vishnoi K, Kaur H, Srivastava Y, Roy BG, Das BC and Bharti AC: Cervical cancer stem cells manifest radioresistance: Association with upregulated AP-1 activity. Sci Rep. 7:47812017. View Article : Google Scholar : PubMed/NCBI | |
Wei ZT, Yu XW, He JX, Liu Y and Zhang SL: Characteristics of primary side population cervical cancer cells. Oncol Lett. 14:3536–3544. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu L, Li F, Wu T, Jiang H, Jiang X, Du X and Wang Y: Salinomycin exerts anticancer effects on PC-3 cells and PC-3-derived cancer stem cells in vitro and in vivo. Biomed Res Int. 2017:41016532017.PubMed/NCBI | |
Sordillo PP and Helson L: Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res. 35:599–614. 2015.PubMed/NCBI | |
Li Y and Zhang T: Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett. 346:197–205. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu CM, Peng CY, Liao YW, Lu MY, Tsai ML, Yeh JC, Yu CH and Yu CC: Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction. J Formos Med Assoc. 116:41–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li Y, Dai Y, Liu Q, Ning S, Liu J, Shen Z, Zhu D, Jiang F and Li Z: Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep. 6:367962016. View Article : Google Scholar : PubMed/NCBI | |
Naujokat C and Steinhart R: Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol. 2012:9506582012. View Article : Google Scholar : PubMed/NCBI |