Genome‑wide ChIP‑seq data with a transcriptome analysis reveals the groups of genes regulated by histone demethylase LSD1 inhibition in esophageal squamous cell carcinoma cells
- Authors:
- Isamu Hoshino
- Masahiko Takahashi
- Yasunori Akutsu
- Kentaro Murakami
- Yasunori Matsumoto
- Hiroshi Suito
- Nobufumi Sekino
- Aki Komatsu
- Keiko Iida
- Takayoshi Suzuki
- Itsuro Inoue
- Fumitaka Ishige
- Yosuke Iwatate
- Hisahiro Matsubara
-
Affiliations: Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo‑ku, Chiba 260‑8670, Japan, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kita‑ku, Kyoto 403‑8334, Japan, Division of Human Genetics, National Institute of Genetics, Mishima, Shizuoka 411‑8540, Japan, Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chuo‑ku, Chiba 260‑8717, Japan - Published online on: May 13, 2019 https://doi.org/10.3892/ol.2019.10350
- Pages: 872-881
-
Copyright: © Hoshino et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Liang H, Fan JH and Qiao YL: Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China. Cancer Biol Med. 14:33–41. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y: Epidemiology of esophageal cancer. World J Gastroenterol. 19:5598–5606. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Enzinger PC and Mayer RJ: Esophageal cancer. N Engl J Med. 349:2241–2252. 2003. View Article : Google Scholar : PubMed/NCBI | |
Meng J, Zhang J, Xiu Y, Jin Y, Xiang J, Nie Y, Fu S and Zhao K: Prognostic value of an immunohistochemical signature in patients with esophageal squamous cell carcinoma undergoing radical esophagectomy. Mol Oncol. 12:196–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scheepers JJ, van der Peet DL, Veenhof AA, Heijnen B and Cuesta MA: Systematic approach of postoperative gastric conduit complications after esophageal resection. Dis Esophagus. 23:117–121. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baba Y, Saeki H, Nakashima Y, Oki E, Shigaki H, Yoshida N, Watanabe M, Maehara Y and Baba H: Review of chemotherapeutic approaches for operable and inoperable esophageal squamous cell carcinoma. Dis Esophagus. 30:1–7. 2017. | |
Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P and Cunningham D: Oesophageal cancer. Nat Rev Dis Primers. 3:170482017. View Article : Google Scholar : PubMed/NCBI | |
Lin DC, Wang MR and Koeffler HP: Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients. Gastroenterology. 154:374–389. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hamm CA and Costa FF: Epigenomes as therapeutic targets. Pharmacol Ther. 151:72–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hoshino I, Matsubara H, Hanari N, Mori M, Nishimori T, Yoneyama Y, Akutsu Y, Sakata H, Matsushita K, Seki N and Ochiai T: Histone deacetylase inhibitor FK228 activates tumor suppressor Prdx1 with apoptosis induction in esophageal cancer cells. Clin Cancer Res. 11:7945–7952. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hoshino I, Matsubara H, Akutsu Y, Nishimori T, Yoneyama Y, Murakami K, Komatsu A, Sakata H, Matsushita K and Ochiai T: Gene expression profiling induced by histone deacetylase inhibitor, FK228, in human esophageal squamous cancer cells. Oncol Rep. 18:585–592. 2007.PubMed/NCBI | |
Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M and Matsubara H: miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 127:2804–2814. 2010. View Article : Google Scholar : PubMed/NCBI | |
Isozaki Y, Hoshino I, Nohata N, Kinoshita T, Akutsu Y, Hanari N, Mori M, Yoneyama Y, Akanuma N, Takeshita N, et al: Identification of novel molecular targets regulated by tumor suppressive miR-375 induced by histone acetylation in esophageal squamous cell carcinoma. Int J Oncol. 41:985–994. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takeshita N, Mori M, Kano M, Hoshino I, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, et al: miR-203 inhibits the migration and invasion of esophageal squamous cell carcinoma by regulating LASP1. Int J Oncol. 41:1653–1661. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N, et al: Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 108:644–652. 2013. View Article : Google Scholar : PubMed/NCBI | |
Akanuma N, Hoshino I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, Yusup G, Qin W, Toyozumi T, Takahashi M, et al: MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer. 110:189–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hoshino I, Akutsu Y, Murakami K, Akanuma N, Isozaki Y, Maruyama T, Toyozumi T, Matsumoto Y, Suito H, Takahashi M, et al: Histone demethylase LSD1 inhibitors prevent cell growth by regulating gene expression in esophageal squamous cell carcinoma cells. Ann Surg Oncol. 23:312–320. 2016. View Article : Google Scholar : PubMed/NCBI | |
McGrath J and Trojer P: Targeting histone lysine methylation in cancer. Pharmacol Ther. 150:1–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Allfrey VG and Mirsky AE: Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science. 144:5591964. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Lan F, Matson C. Mulligan P, Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X and Song Y: Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS One. 7:e350652012. View Article : Google Scholar : PubMed/NCBI | |
Kashyap V, Ahmad S, Nilsson EM, Helczynski L, Kenna S, Persson JL, Gudas LJ and Mongan NP: The lysine specific demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. Mol Oncol. 7:555–566. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao ZK, Yu HF, Wang DR, Dong P, Chen L, Wu WG, Ding WJ and Liu YB: Overexpression of lysine specific demethylase 1 predicts worse prognosis in primary hepatocellular carcinoma patients. World J Gastroenterol. 18:6651–6656. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R and Kirfel J: Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis. 31:512–520. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kerenyi MA, Shao Z, Hsu YJ, Guo G, Luc S, O'Brien K, Fujiwara Y, Peng C, Nguyen M and Orkin SH: Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. Elife. 2:e006332013. View Article : Google Scholar : PubMed/NCBI | |
Ueda R, Suzuki T, Mino K, Tsumoto H, Nakagawa H, Hasegawa M, Sasaki R, Mizukami T and Miyata N: Identification of cell-active lysine specific demethylase 1-selective inhibitors. J Am Chem Soc. 131:17536–17537. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hamada S, Suzuki T, Mino K, Koseki K, Oehme F, Flamme I, Ozasa H, Itoh Y, Ogasawara D, Komaarashi H, et al: Design, synthesis, enzyme-inhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors. J Med Chem. 53:5629–5638. 2010. View Article : Google Scholar : PubMed/NCBI | |
Etani T, Suzuki T, Naiki T, Naiki-Ito A, Ando R, Iida K, Kawai N, Tozawa K, Miyata N, Kohri K and Takahashi S: NCL1, a highly selective lysine-specific demethylase 1 inhibitor, suppresses prostate cancer without adverse effect. Oncotarget. 6:2865–2878. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, Weichselbaum RR and Khodarev NN: STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med. 7:682009. View Article : Google Scholar : PubMed/NCBI | |
Li H and Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25:1754–1760. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W and Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9:R1372008. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Li W, Song J, Wei L and Liu XS: CEAS: Cis-regulatory element annotation system. Nucleic Acids Res 34 (Web Server Issue). W551–W554. 2006. View Article : Google Scholar | |
Shin H, Liu T, Manrai AK and Liu XS: CEAS: Cis-regulatory element annotation system. Bioinformatics. 25:2605–2606. 2009. View Article : Google Scholar : PubMed/NCBI | |
Quinlan AR and Hall IM: BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 26:841–842. 2010. View Article : Google Scholar : PubMed/NCBI | |
Anders S and Huber W: Differential expression analysis for sequence count data. Genome Biol. 11:R1062010. View Article : Google Scholar : PubMed/NCBI | |
Zheng YC, Yu B, Jiang GZ, Feng XJ, He PX, Chu XY, Zhao W and Liu HM: Irreversible lsd1 inhibitors: Application of tranylcypromine and its derivatives in cancer treatment. Curr Top Med Chem. 16:2179–2188. 2016. View Article : Google Scholar : PubMed/NCBI | |
Theisen ER, Gajiwala S, Bearss J, Sorna V, Sharma S and Janat-Amsbury M: Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma. BMC Cancer. 14:7522014. View Article : Google Scholar : PubMed/NCBI | |
Maes T, Mascaró C, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Guibourt N, Perdones A, Lufino MMP, Somervaille TCP, et al: ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell. 33:495–511.e12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maes T, Carceller E, Salas J, Ortega A and Buesa C: Advances in the development of histone lysine demethylase inhibitors. Curr Opin Pharmacol. 23:52–60. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maiques-Diaz A and Somervaille TC: LSD1: Biologic roles and therapeutic targeting. Epigenomics. 8:1103–1116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kidger AM, Rushworth LK, Stellzig J, Davidson J, Bryant CJ, Bayley C, Caddye E, Rogers T, Keyse SM and Caunt CJ: Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci USA. 114:E317–E326. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Liu L, Li H, Huang L, Yin M, Pan C, Qin H and Jin Z: Dual specificity phosphatase 5 is a novel prognostic indicator for patients with advanced colorectal cancer. Am J Cancer Res. 6:2323–2333. 2016.PubMed/NCBI | |
Hwang JH, Joo JC, Kim DJ, Jo E, Yoo HS, Lee KB, Park SJ and Jang IS: Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells. Am J Cancer Res. 6:1758–1771. 2016.PubMed/NCBI | |
Asanoma K, Liu G, Yamane T, Miyanari Y, Takao T, Yagi H, Ohgami T, Ichinoe A, Sonoda K, Wake N and Kato K: Regulation of the mechanism of TWIST1 transcription by BHLHE40 and BHLHE41 in cancer cells. Mol Cell Biol. 35:4096–4109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Furukawa H, Makino T, Yamasaki M, Tanaka K, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mori M and Doki Y: PRIMA-1 induces p53-mediated apoptosis by upregulating Noxa in esophageal squamous cell carcinoma with TP53 missense mutation. Cancer Sci. 109:412–421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saha MN, Jiang H, Yang Y, Reece D and Chang H: PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa. Mol Cancer Ther. 12:2331–2341. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zandi R, Selivanova G, Christensen CL, Gerds TA, Willumsen BM and Poulsen HS: PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin Cancer Res. 17:2830–2841. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Besch-Williford C and Hyder SM: PRIMA-1 inhibits growth of breast cancer cells by re-activating mutant p53 protein. Int J Oncol. 35:1015–1023. 2009.PubMed/NCBI | |
Li XL, Zhou J, Chan ZL, Chooi JY, Chen ZR and Chng WJ: PRIMA-1met (APR-246) inhibits growth of colorectal cancer cells with different p53 status through distinct mechanisms. Oncotarget. 6:36689–36699. 2015.PubMed/NCBI | |
Lu T, Zou Y, Xu G, Potter JA, Taylor GL, Duan Q, Yang Q, Xiong H, Qiu H, Ye D, et al: PRIMA-1Met suppresses colorectal cancer independent of p53 by targeting MEK. Oncotarget. 7:83017–83030. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lehmann S, Bykov VJ, Ali D, Andrén O, Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A, et al: Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 30:3633–3639. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki T, Kato H, Nakajima M, Faried A, Takita J, Sohda M, Fukai Y, Yamaguchi S, Masuda N, Manda R, et al: An immunohistochemical study of TIMP-3 expression in oesophageal squamous cell carcinoma. Br J Cancer. 91:1556–1560. 2004. View Article : Google Scholar : PubMed/NCBI | |
Apte SS, Olsen BR and Murphy G: The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem. 270:14313–14318. 1995. View Article : Google Scholar : PubMed/NCBI | |
Visse R and Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res. 92:827–839. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ahonen M, Baker AH and Kahari VM: Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 58:2310–2315. 1998.PubMed/NCBI | |
Smith MR, Kung H, Durum SK, Colburn NH and Sun Y: TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine. 9:770–780. 1997. View Article : Google Scholar : PubMed/NCBI | |
Baker AH, George SJ, Zaltsman AB, Murphy G and Newby AC: Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer. 79:1347–1355. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bond M, Murphy G, Bennett MR, Amour A, Knauper V, Newby AC and Baker AH: Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity. J Biol Chem. 275:41358–41363. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ahonen M, Poukkula M, Baker AH, Kashiwagi M, Nagase H, Eriksson JE and Kähäri VM: Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene. 22:2121–2134. 2003. View Article : Google Scholar : PubMed/NCBI | |
Coutinho-Camillo CM, Lourenço SV, Nonogaki S, Vartanian JG, Nagai MA, Kowalski LP and Soares FA: Expression of PAR-4 and PHLDA1 is prognostic for overall and disease-free survival in oral squamous cell carcinomas. Virchows Arch. 463:31–39. 2013. View Article : Google Scholar : PubMed/NCBI | |
Neef R, Kuske MA, Pröls E and Johnson JP: Identification of the human PHLDA1/TDAG51 gene: down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Res. 62:5920–5929. 2002.PubMed/NCBI | |
Nagai MA, Fregnani JH, Netto MM, Brentani MM and Soares FA: Down-regulation of PHLDA1 gene expression is associated with breast cancer progression. Breast Cancer Res Treat. 106:49–56. 2007. View Article : Google Scholar : PubMed/NCBI | |
Oberst MD, Beberman SJ, Zhao L, Yin JJ, Ward Y and Kelly K: TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation. BMC Cancer. 8:1892008. View Article : Google Scholar : PubMed/NCBI | |
Park CG, Lee SY, Kandala G, Lee SY and Choi Y: A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity. 4:583–591. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gomes I, Xiong W, Miki T and Rosner MR: A proline- and glutamine-rich protein promotes apoptosis in neuronal cells. J Neurochem. 73:612–622. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E, et al: TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem. 278:30317–30327. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ju JA and Gilkes DM: RhoB: Team oncogene or team tumor suppressor? Genes (Basel). 9(pii): E672018. View Article : Google Scholar : PubMed/NCBI | |
Parri M and Chiarugi P: Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 8:232010. View Article : Google Scholar : PubMed/NCBI | |
Vega FM and Ridley AJ: Rho GTPases in cancer cell biology. FEBS Lett. 582:2093–2101. 2008. View Article : Google Scholar : PubMed/NCBI | |
Porter AP, Papaioannou A and Malliri A: Deregulation of Rho GTPases in cancer. Small GTPases. 7:123–138. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhavsar PJ, Infante E, Khwaja A and Ridley AJ: Analysis of Rho GTPase expression in T-ALL identifies RhoU as a target for Notch involved in T-ALL cell migration. Oncogene. 32:198–208. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poveda J, Sanz AB, Fernandez-Fernandez B, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Ortiz A and Sanchez-Niño MD: MXRA5 is a TGF-β1-regulated human protein with anti-inflammatory and anti-fibrotic properties. J Cell Mol Med. 21:154–164. 2017. View Article : Google Scholar : PubMed/NCBI | |
He Y, Chen X, Liu H, Xiao H, Kwapong WR and Mei J: Matrix-remodeling associated 5 as a novel tissue biomarker predicts poor prognosis in non-small cell lung cancers. Cancer Biomark. 15:645–651. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang GH, Yao L, Xu HW, Tang WT, Fu JH, Hu XF, Cui L and Xu XM: Identification of MXRA5 as a novel biomarker in colorectal cancer. Oncol Lett. 5:544–548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Buckanovich RJ, Sasaroli D, O'Brien-Jenkins A, Botbyl J, Hammond R, Katsaros D, Sandaltzopoulos R, Liotta LA, Gimotty PA and Coukos G: Tumor vascular proteins as biomarkers in ovarian cancer. J Clin Oncol. 25:852–861. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xiong D, Li G, Li K, Xu Q, Pan Z, Ding F, Vedell P, Liu P, Cui P, Hua X, et al: Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients. Carcinogenesis. 33:1797–1805. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Sun L, Yuan X and Qiu H: Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget. 8:84546–84558. 2017.PubMed/NCBI | |
Zhou ZQ, Cao WH, Xie JJ, Lin J, Shen ZY, Zhang QY, Shen JH, Xu LY and Li EM: Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma. BMC Cancer. 9:2912009. View Article : Google Scholar : PubMed/NCBI |