ST6GAL1: A key player in cancer (Review)
- Authors:
- Rebecca Garnham
- Emma Scott
- Karen E. Livermore
- Jennifer Munkley
-
Affiliations: Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK - Published online on: June 7, 2019 https://doi.org/10.3892/ol.2019.10458
- Pages: 983-989
-
Copyright: © Garnham et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Varki A: Biological roles of glycans. Glycobiology. 27:3–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pinho SS and Reis CA: Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer. 15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI | |
Munkley J and Elliott DJ: Hallmarks of glycosylation in cancer. Oncotarget. 7:35478–35489. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vajaria BN and Patel PS: Glycosylation: A hallmark of cancer? Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang PH, Lee WL, Juang CM, Yang YH, Lo WH, Lai CR, Hsieh SL and Yuan CC: Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol Oncol. 99:631–639. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bhide GP and Colley KJ: Sialylation of N-glycans: Mechanism, cellular compartmentalization and function. Histochem Cell Biol. 147:149–174. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munkley J, Oltean S, Vodak D, Wilson BT, Livermore KE, Zhou Y, Star E, Floros VI, Johannessen B, Knight B, et al: The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget. 6:34358–34374. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vajaria BN, Patel KR, Begum R and Patel PS: Sialylation: An Avenue to Target Cancer Cells. Pathol Oncol Res. 22:443–447. 2016. View Article : Google Scholar : PubMed/NCBI | |
Munkley J: The role of Sialyl-Tn in cancer. Int J Mol Sci. 17:2752016. View Article : Google Scholar : PubMed/NCBI | |
Scott E and Munkley J: Glycans as biomarkers in prostate cancer. Int J Mol Sci. 20:E13892019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wuhrer M and Holst S: Serum sialylation changes in cancer. Glycoconj J. 35:139–160. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dall'Olio F: The sialyl-alpha2,6-lactosaminyl-structure: Biosynthesis and functional role. Glycoconj J. 17:669–676. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CC, Shyr YM, Liao WY, Chen TH, Wang SE, Lu PC, Lin PY, Chen YB, Mao WY, Han HY, et al: Elevation of β-galactoside α2,6-sialyltransferase 1 in a fructoseresponsive manner promotes pancreatic cancer metastasis. Oncotarget. 8:7691–7709. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wei A, Fan B, Zhao Y, Zhang H, Wang L, Yu X, Yuan Q, Yang D and Wang S: ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3β/β-catenin signaling pathway. Oncotarget. 7:65374–65388. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Isaji T, Im S, Fukuda T, Hashii N, Takakura D, Kawasaki N and Gu J: β-Galactoside α2,6-sialyltranferase 1 promotes transforming growth factor-β-mediated epithelial-mesenchymal transition. J Biol Chem. 289:34627–34641. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wichert B, Milde-Langosch K, Galatenko V, Schmalfeldt B and Oliveira-Ferrer L: Prognostic role of the sialyltransferase ST6GAL1 in ovarian cancer. Glycobiology. 28:898–903. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hebbar M, Krzewinski-Recchi MA, Hornez L, Verdière A, Harduin-Lepers A, Bonneterre J, Delannoy P and Peyrat JP: Prognostic value of tumoral sialyltransferase expression and circulating E-selectin concentrations in node-negative breast cancer patients. Int J Biol Markers. 18:116–122. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jones RB, Dorsett KA, Hjelmeland AB and Bellis SL: The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1α signaling. J Biol Chem. 293:5659–5667. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Swindall AF, Kesterson RA, Schoeb TR, Bullard DC and Bellis SL: ST6Gal-I regulates macrophage apoptosis via α2-6 sialylation of the TNFR1 death receptor. J Biol Chem. 286:39654–39662. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Ren C, Wang L, Zhao Y and Wang S: Knockdown of ST6Gal-I inhibits the growth and invasion of osteosarcoma MG-63 cells. Biomed Pharmacother. 72:172–178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto H, Oviedo A, Sweeley C, Saito T and Moskal JR: Alpha2,6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res. 61:6822–6829. 2001.PubMed/NCBI | |
Zhao Y, Wei A, Zhang H, Chen X, Wang L, Zhang H, Yu X, Yuan Q, Zhang J and Wang S: α2,6-Sialylation mediates hepatocellular carcinoma growth in vitro and in vivo by targeting the Wnt/β-catenin pathway. Oncogenesis. 6:e3432017. View Article : Google Scholar : PubMed/NCBI | |
Munkley J: Glycosylation is a global target for androgen control in prostate cancer cells. Endocr Relat Cancer. 24:R49–R64. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munkley J, Vodak D, Livermore KE, James K, Wilson BT, Knight B, Mccullagh P, Mcgrath J, Crundwell M, Harries LW, et al: Glycosylation is an androgen-regulated process essential for prostate cancer cell viability. EBioMedicine. 8:103–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Recchi MA, Hebbar M, Hornez L, Harduin-Lepers A, Peyrat JP and Delannoy P: Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res. 58:4066–4070. 1998.PubMed/NCBI | |
Bassaganas S, Allende H, Cobler L, Ortiz MR, Llop E, de Bolós C and Peracaula R: Inflammatory cytokines regulate the expression of glycosyltransferases involved in the biosynthesis of tumor-associated sialylated glycans in pancreatic cancer cell lines. Cytokine. 75:197–206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Agrawal P, Fontanals-Cirera B, Sokolova E, Jacob S, Vaiana CA, Argibay D, Davalos V, McDermott M, Nayak S, Darvishian F, et al: A Systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell. 31:804–819.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munkley J: The glycosylation landscape of pancreatic cancer. Oncol Lett. 17:2569–2575. 2019.PubMed/NCBI | |
Antony P, Rose M, Heidenreich A, Knuchel R, Gaisa NT and Dahl E: Epigenetic inactivation of ST6GAL1 in human bladder cancer. BMC Cancer. 14:9012014. View Article : Google Scholar : PubMed/NCBI | |
Jin K, Li T, van Dam H, Zhou F and Zhang L: Molecular insights into tumour metastasis: Tracing the dominant events. J Pathol. 241:567–577. 2017. View Article : Google Scholar : PubMed/NCBI | |
Montanari M, Rossetti S, Cavaliere C, D'Aniello C, Malzone MG, Vanacore D, Di Franco R, La Mantia E, Iovane G, Piscitelli R, et al: Epithelial-mesenchymal transition in prostate cancer: An overview. Oncotarget. 8:35376–35389. 2017. View Article : Google Scholar : PubMed/NCBI | |
Goossens S, Vandamme N, Van Vlierberghe P and Berx G: EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 1868:584–591. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park JJ and Lee M: Increasing the α 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver. 7:629–641. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, Cutler C, Zeng J, Wang J, Sun X, et al: Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics. Proteomics Clin Appl. 7:618–631. 2013.PubMed/NCBI | |
Schultz MJ, Swindall AF and Bellis SL: Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 31:501–518. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kannagi R, Izawa M, Koike T, Miyazaki K and Kimura N: Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 95:377–384. 2004. View Article : Google Scholar : PubMed/NCBI | |
Irimura T, Nakamori S, Matsushita Y, Taniuchi Y, Todoroki N, Tsuji T, Izumi Y, Kawamura Y, Hoff SD, Cleary KR, et al: Colorectal cancer metastasis determined by carbohydrate-mediated cell adhesion: Role of sialyl-LeX antigens. Semin Cancer Biol. 4:319–324. 1993.PubMed/NCBI | |
Ugorski M and Laskowska A: Sialyl Lewis(a): A tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol. 49:303–311. 2002.PubMed/NCBI | |
Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A, Fearns A, Jamal-Hanjani M, Sims D, Fenwick K, et al: An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 4:304–317. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li Y, Ma H, Dong W, Zhou H, Song X, Zhang J and Jia L: Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. Mol Cell Proteomics. 13:520–536. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang PH, Lee WL, Lee YR, Juang CM, Chen YJ, Chao HT, Tsai YC and Yuan CC: Enhanced expression of alpha 2,6-sialyltransferase ST6Gal I in cervical squamous cell carcinoma. Gynecol Oncol. 89:395–401. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Kemmner W, Grigull S and Schlag PM: Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells. Exp Cell Res. 276:101–110. 2002. View Article : Google Scholar : PubMed/NCBI | |
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, et al: Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol. 35 (Suppl):S25–S54. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Dong W, Su Z, Zhao L, Miao Y, Li N, Zhou H and Jia L: Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis. 7:e25612016. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Manning BD and Cantley LC: Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell. 4:257–262. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tokunaga E, Kimura Y, Mashino K, Oki E, Kataoka A, Ohno S, Morita M, Kakeji Y, Baba H and Maehara Y: Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer. 13:137–144. 2006. View Article : Google Scholar : PubMed/NCBI | |
Deying W, Feng G, Shumei L, Hui Z, Ming L and Hongqing W: CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 37:BSR201604702017. View Article : Google Scholar : PubMed/NCBI | |
De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A, Zoppoli P, et al: Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One. 12:e01788652017. View Article : Google Scholar : PubMed/NCBI | |
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, et al: Therapeutic targeting of replicative immortality. Semin Cancer Biol. 35 (Suppl):S104–S128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roninson IB: Tumor cell senescence in cancer treatment. Cancer Res. 63:2705–2715. 2003.PubMed/NCBI | |
Braig M and Schmitt CA: Oncogene-induced senescence: Putting the brakes on tumor development. Cancer Res. 66:2881–2884. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin AW and Lowe SW: Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci USA. 98:5025–5030. 2001. View Article : Google Scholar : PubMed/NCBI | |
Courtois-Cox S, Jones SL and Cichowski K: Many roads lead to oncogene-induced senescence. Oncogene. 27:2801–2809. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chou TY, Hart GW and Dang CV: c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem. 270:18961–18965. 1995. View Article : Google Scholar : PubMed/NCBI | |
Castellano E and Downward J: RAS interaction with PI3K: More than just another effector pathway. Genes Cancer. 2:261–274. 2011. View Article : Google Scholar : PubMed/NCBI | |
Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, Denat L, Goodall J, Luciani F, Viros A, et al: Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21:2923–2935. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Toh L, Lau P and Wang X: Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J Biol Chem. 287:32494–32511. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eelen G, Dubois C, Cantelmo AR, Goveia J, Brüning U, DeRan M, Jarugumilli G, van Rijssel J, Saladino G, Comitani F, et al: Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature. 561:63–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI | |
De Palma M, Biziato D and Petrova TV: Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 17:457–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chiodelli P, Rezzola S, Urbinati C, Federici Signori F, Monti E, Ronca R, Presta M and Rusnati M: Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Oncogene. 36:6531–6541. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng WK and Oon CE: How glycosylation aids tumor angiogenesis: An updated review. Biomed Pharmacother. 103:1246–1252. 2018. View Article : Google Scholar : PubMed/NCBI | |
Croci DO, Cerliani JP, Pinto NA, Morosi LG and Rabinovich GA: Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology. 24:1283–1290. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K and Reginato MJ: Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem. 287:11070–11081. 2012. View Article : Google Scholar : PubMed/NCBI | |
Croci DO, Cerliani JP, Dalotto-Moreno T, Méndez-Huergo SP, Mascanfroni ID, Dergan-Dylon S, Toscano MA, Caramelo JJ, García-Vallejo JJ, Ouyang J, et al: Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell. 156:744–758. 2014. View Article : Google Scholar : PubMed/NCBI | |
Croci DO and Rabinovich GA: Linking tumor hypoxia with VEGFR2 signaling and compensatory angiogenesis: Glycans make the difference. Oncoimmunology. 3:e293802014. View Article : Google Scholar : PubMed/NCBI | |
LaGory EL and Giaccia AJ: The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol. 18:356–365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Xiong Z, Wei T, Li Q, Tan Y, Ling L and Feng X: Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis. 9:2762018. View Article : Google Scholar : PubMed/NCBI | |
Evans EK and Kornbluth S: Regulation of apoptosis in Xenopus egg extracts. Adv Enzyme Regul. 38:265–280. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lowe M, Lane JD, Woodman PG and Allan VJ: Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J Cell Sci. 117:1139–1150. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kerr JF: History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182. 471–474. 2002. View Article : Google Scholar | |
Fernald K and Kurokawa M: Evading apoptosis in cancer. Trends Cell Biol. 23:620–633. 2013. View Article : Google Scholar : PubMed/NCBI | |
Adams JM and Cory S: Bcl-2-regulated apoptosis: Mechanism and therapeutic potential. Curr Opin Immunol. 19:488–496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Walker BK, Lei H and Krag SS: A functional link between N-linked glycosylation and apoptosis in Chinese hamster ovary cells. Biochem Biophys Res Commun. 250:264–270. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Liu X, Gao J, Sun Y, Liu T, Yan Q and Yang X: The role of epithelial cell adhesion molecule N-glycosylation on apoptosis in breast cancer cells. Tumour Biol. 39:10104283176959732017.PubMed/NCBI | |
Rapoport E and Pendu JL: Glycosylation alterations of cells in late phase apoptosis from colon carcinomas. Glycobiology. 9:1337–1345. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gwak H, Kim S, Dhanasekaran DN and Song YS: Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells. Cancer Lett. 371:347–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Seyrek K, Richter M and Lavrik IN: Decoding the sweet regulation of apoptosis: The role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ. 26:981–993. 2019. View Article : Google Scholar : PubMed/NCBI | |
Suzuki O, Abe M and Hashimoto Y: Caspase-dependent drug-induced apoptosis is regulated by cell surface sialylation in human B-cell lymphoma. Oncol Lett. 10:687–690. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meesmann HM, Fehr EM, Kierschke S, Herrmann M, Bilyy R, Heyder P, Blank N, Krienke S, Lorenz HM and Schiller M: Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci. 123:3347–3356. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peter ME, Hellbardt S, Schwartz-Albiez R, Westendorp MO, Walczak H, Moldenhauer G, Grell M and Krammer PH: Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death Differ. 2:163–171. 1995.PubMed/NCBI | |
Swindall AF and Bellis SL: Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem. 286:22982–22990. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yao R and Cooper GM: Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 267:2003–2006. 1995. View Article : Google Scholar : PubMed/NCBI | |
Franke TF, Kaplan DR and Cantley LC: PI3K: Downstream AKTion blocks apoptosis. Cell. 88:435–437. 1997. View Article : Google Scholar : PubMed/NCBI | |
Burkhart DL and Sage J: Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 8:671–682. 2008. View Article : Google Scholar : PubMed/NCBI | |
Masuda M, Yageta M, Fukuhara H, Kuramochi M, Maruyama T, Nomoto A and Murakami Y: The tumor suppressor protein TSLC1 is involved in cell-cell adhesion. J Biol Chem. 277:31014–31019. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bierie B and Moses HL: TGF-beta and cancer. Cytokine Growth Factor Rev. 17:29–40. 2006. View Article : Google Scholar : PubMed/NCBI | |
Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI | |
Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, Vocadlo DJ, Seagroves TN and Reginato MJ: O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell. 54:820–831. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ferrer CM and Reginato MJ: Sweet connections: O-GlcNAcylation links cancer cell metabolism and survival. Mol Cell Oncol. 2:e9618092014. View Article : Google Scholar : PubMed/NCBI | |
Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, Zhao L, Liu J, Qu C, Wei R, et al: Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell. 30:779–791. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et al: Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wrzesinski SH, Wan YY and Flavell RA: Transforming growth factor-beta and the immune response: Implications for anticancer therapy. Clin Cancer Res. 13:5262–5270. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura A and Muto G: TGF-β function in immune suppression. Curr Top Microbiol Immunol. 350:127–147. 2011.PubMed/NCBI | |
DeNardo DG, Andreu P and Coussens LM: Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity. Cancer Metastasis Rev. 29:309–316. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI | |
Colotta F, Allavena P, Sica A, Garlanda C and Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis. 30:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dube DH and Bertozzi CR: Glycans in cancer and inflammation-potential for therapeutics and diagnostics. Nat Rev Drug Discov. 4:477–488. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marth JD and Grewal PK: Mammalian glycosylation in immunity. Nat Rev Immunol. 8:874–887. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hennet T, Chui D, Paulson JC and Marth JD: Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad Sci USA. 95:4504–4509. 1998. View Article : Google Scholar : PubMed/NCBI | |
Engdahl C, Bondt A, Harre U, Raufer J, Pfeifle R, Camponeschi A, Wuhrer M, Seeling M, Mårtensson IL, Nimmerjahn F, et al: Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: A potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res Ther. 20:842018. View Article : Google Scholar : PubMed/NCBI | |
Perdicchio M, Ilarregui JM, Verstege MI, Cornelissen LA, Schetters ST, Engels S, Ambrosini M, Kalay H, Veninga H, den Haan JM, et al: Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc Natl Acad Sci USA. 113:3329–3334. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chou RH, Wang YN, Hsieh YH, Li LY, Xia W, Chang WC, Chang LC, Cheng CC, Lai CC, Hsu JL, et al: EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4. Dev Cell. 30:224–237. 2014. View Article : Google Scholar : PubMed/NCBI | |
Britain CM, Holdbrooks AT, Anderson JC, Willey CD and Bellis SL: Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death. J Ovarian Res. 11:122018. View Article : Google Scholar : PubMed/NCBI | |
Chiricolo M, Malagolini N, Bonfiglioli S and Dall'Olio F: Phenotypic changes induced by expression of beta-galactoside alpha2,6 sialyltransferase I in the human colon cancer cell line SW948. Glycobiology. 16:146–154. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN, Buchsbaum DJ, Conner MG, Arend RC, Yoon KJ, Klug CA, et al: The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res. 76:3978–3988. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gretschel S, Haensch W, Schlag PM and Kemmner W: Clinical relevance of sialyltransferases ST6GAL-I and ST3GAL-III in gastric cancer. Oncology. 65:139–145. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Zhou H, Song X, Shi S, Zhang J and Jia L: Modification of sialylation is associated with multidrug resistance in human acute myeloid leukemia. Oncogene. 34:726–740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pousset D, Piller V, Bureaud N, Monsigny M and Piller F: Increased alpha2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma. Cancer Res. 57:4249–4256. 1997.PubMed/NCBI |